Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Aug;178(15):4742–4746. doi: 10.1128/jb.178.15.4742-4746.1996

Glutathione amide and its perthiol in anaerobic sulfur bacteria.

R G Bartsch 1, G L Newton 1, C Sherrill 1, R C Fahey 1
PMCID: PMC178251  PMID: 8755912

Abstract

Chromatium species produced the novel biological thiol glutathione amide, gamma-L-glutamyl-L-cysteinylglycine amide (GASH), when grown photoheterotrophically. GASH was largely converted to the corresponding perthiol during photoautotrophic growth on sulfide, suggesting that GASH may have a function in anaerobic sulfide metabolism. This unprecedented form of glutathione metabolism was probably present in anaerobic ancestors of modern cyanobacteria and purple bacteria.

Full Text

The Full Text of this article is available as a PDF (213.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. E., Powrie F., Puri R. N., Meister A. Glutathione monoethyl ester: preparation, uptake by tissues, and conversion to glutathione. Arch Biochem Biophys. 1985 Jun;239(2):538–548. doi: 10.1016/0003-9861(85)90723-4. [DOI] [PubMed] [Google Scholar]
  2. Brune D. C. Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina. Arch Microbiol. 1995 Jun;163(6):391–399. doi: 10.1007/BF00272127. [DOI] [PubMed] [Google Scholar]
  3. Bump E. A., Brown J. M. Role of glutathione in the radiation response of mammalian cells in vitro and in vivo. Pharmacol Ther. 1990;47(1):117–136. doi: 10.1016/0163-7258(90)90048-7. [DOI] [PubMed] [Google Scholar]
  4. Cavalier-Smith T. The number of symbiotic origins of organelles. Biosystems. 1992;28(1-3):91–108. doi: 10.1016/0303-2647(92)90011-m. [DOI] [PubMed] [Google Scholar]
  5. Chung Y. C., Hurlbert R. E. Purification and properties of the glutathione reductase of Chromatium vinosum. J Bacteriol. 1975 Jul;123(1):203–211. doi: 10.1128/jb.123.1.203-211.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fahey R. C., Buschbacher R. M., Newton G. L. The evolution of glutathione metabolism in phototrophic microorganisms. J Mol Evol. 1987;25:81–88. doi: 10.1007/BF02100044. [DOI] [PubMed] [Google Scholar]
  7. Fahey R. C., Newton G. L., Arrick B., Overdank-Bogart T., Aley S. B. Entamoeba histolytica: a eukaryote without glutathione metabolism. Science. 1984 Apr 6;224(4644):70–72. doi: 10.1126/science.6322306. [DOI] [PubMed] [Google Scholar]
  8. Fahey R. C., Newton G. L. Determination of low-molecular-weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography. Methods Enzymol. 1987;143:85–96. doi: 10.1016/0076-6879(87)43016-4. [DOI] [PubMed] [Google Scholar]
  9. Fahey R. C., Sundquist A. R. Evolution of glutathione metabolism. Adv Enzymol Relat Areas Mol Biol. 1991;64:1–53. doi: 10.1002/9780470123102.ch1. [DOI] [PubMed] [Google Scholar]
  10. Gray M. W. The endosymbiont hypothesis revisited. Int Rev Cytol. 1992;141:233–357. doi: 10.1016/s0074-7696(08)62068-9. [DOI] [PubMed] [Google Scholar]
  11. Hageage G. J., Jr, Eanes E. D., Gherna R. L. X-ray diffraction studies of the sulfur globules accumulated by Chromatium species. J Bacteriol. 1970 Feb;101(2):464–469. doi: 10.1128/jb.101.2.464-469.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hurlbert R. E. Effect of oxygen on viability and substrate utilization in Chromatium. J Bacteriol. 1967 Apr;93(4):1346–1352. doi: 10.1128/jb.93.4.1346-1352.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mannervik B., Danielson U. H. Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem. 1988;23(3):283–337. doi: 10.3109/10409238809088226. [DOI] [PubMed] [Google Scholar]
  14. Meister A., Anderson M. E. Glutathione. Annu Rev Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. [DOI] [PubMed] [Google Scholar]
  15. Newton G. L., Fahey R. C. Determination of biothiols by bromobimane labeling and high-performance liquid chromatography. Methods Enzymol. 1995;251:148–166. doi: 10.1016/0076-6879(95)51118-0. [DOI] [PubMed] [Google Scholar]
  16. Newton G. L., Fahey R. C. Purification of thiols from biological samples. Methods Enzymol. 1987;143:96–101. doi: 10.1016/0076-6879(87)43017-6. [DOI] [PubMed] [Google Scholar]
  17. Pemble S. E., Taylor J. B. An evolutionary perspective on glutathione transferases inferred from class-theta glutathione transferase cDNA sequences. Biochem J. 1992 Nov 1;287(Pt 3):957–963. doi: 10.1042/bj2870957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shan X. Q., Aw T. Y., Jones D. P. Glutathione-dependent protection against oxidative injury. Pharmacol Ther. 1990;47(1):61–71. doi: 10.1016/0163-7258(90)90045-4. [DOI] [PubMed] [Google Scholar]
  19. Sherrill C., Khouri O., Zeman S., Roise D. Synthesis and biological activity of fluorescent yeast pheromones. Biochemistry. 1995 Mar 21;34(11):3553–3560. doi: 10.1021/bi00011a009. [DOI] [PubMed] [Google Scholar]
  20. Sundquist A. R., Fahey R. C. The function of gamma-glutamylcysteine and bis-gamma-glutamylcystine reductase in Halobacterium halobium. J Biol Chem. 1989 Jan 15;264(2):719–725. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES