Abstract
The nucleotide sequence of the betaglIIA gene, encoding the extracellular beta-1,3-glucanase IIA (betaglIIA) of the yeast-lytic actinomycete Oerskovia xanthineolytica LL G109, was determined. Sequence comparison shows that the betaglIIA enzyme has over 80% identity to the betaglII isoenzyme, an endo-beta-1,3-glucanase having low yeast-lytic activity secreted by the same bacterium. The betaglIIA enzyme lacks a glucan- or mannan-binding domain, such as those observed in beta-1,3-glucanases and proteases having high yeast/fungus-lytic activity. It can be included in the glycosyl hydrolase family 16. Gene fusion expression in Bacillus subtilis DN1885 followed by preliminary characterization of the recombinant gene product indicates that betaglIIA has a pI of 3.8 to 4.0 and is active on both laminarin and curdlan, having an acid optimum pH activity (ca. 4.0).
Full Text
The Full Text of this article is available as a PDF (379.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aono R., Hammura M., Yamamoto M., Asano T. Isolation of extracellular 28- and 42-kilodalton beta-1,3-glucanases and comparison of three beta-1,3-glucanases produced by Bacillus circulans IAM1165. Appl Environ Microbiol. 1995 Jan;61(1):122–129. doi: 10.1128/aem.61.1.122-129.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diderichsen B., Wedsted U., Hedegaard L., Jensen B. R., Sjøholm C. Cloning of aldB, which encodes alpha-acetolactate decarboxylase, an exoenzyme from Bacillus brevis. J Bacteriol. 1990 Aug;172(8):4315–4321. doi: 10.1128/jb.172.8.4315-4321.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Din N., Forsythe I. J., Burtnick L. D., Gilkes N. R., Miller R. C., Jr, Warren R. A., Kilburn D. G. The cellulose-binding domain of endoglucanase A (CenA) from Cellulomonas fimi: evidence for the involvement of tryptophan residues in binding. Mol Microbiol. 1994 Feb;11(4):747–755. doi: 10.1111/j.1365-2958.1994.tb00352.x. [DOI] [PubMed] [Google Scholar]
- Doi K., Doi A. Cloning and expression in Escherichia coli of the gene for an Arthrobacter beta-(1----3)-glucanase. J Bacteriol. 1986 Dec;168(3):1272–1276. doi: 10.1128/jb.168.3.1272-1276.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernández-Abalos J. M., Sánchez P., Coll P. M., Villanueva J. R., Pérez P., Santamaría R. I. Cloning and nucleotide sequence of celA1, and endo-beta-1,4-glucanase-encoding gene from Streptomyces halstedii JM8. J Bacteriol. 1992 Oct;174(20):6368–6376. doi: 10.1128/jb.174.20.6368-6376.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrer P., Hedegaard L., Halkier T., Diers I., Savva D., Asenjo J. A. Molecular cloning of a lytic beta-1,3-glucanase gene from Oerskovia xanthineolytica LLG109. A beta-1,3-glucanase able to selectively permeabilize the yeast cell wall. Ann N Y Acad Sci. 1996 May 15;782:555–565. doi: 10.1111/j.1749-6632.1996.tb40593.x. [DOI] [PubMed] [Google Scholar]
- Fiske M. J., Tobey-Fincher K. L., Fuchs R. L. Cloning of two genes from Bacillus circulans WL-12 which encode 1,3-beta-glucanase activity. J Gen Microbiol. 1990 Dec;136(12):2377–2383. doi: 10.1099/00221287-136-12-2377. [DOI] [PubMed] [Google Scholar]
- Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C., Jr, Warren R. A. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev. 1991 Jun;55(2):303–315. doi: 10.1128/mr.55.2.303-315.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993 Aug 1;293(Pt 3):781–788. doi: 10.1042/bj2930781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott J. H., Schekman R. Lyticase: endoglucanase and protease activities that act together in yeast cell lysis. J Bacteriol. 1980 May;142(2):414–423. doi: 10.1128/jb.142.2.414-423.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seki N., Muta T., Oda T., Iwaki D., Kuma K., Miyata T., Iwanaga S. Horseshoe crab (1,3)-beta-D-glucan-sensitive coagulation factor G. A serine protease zymogen heterodimer with similarities to beta-glucan-binding proteins. J Biol Chem. 1994 Jan 14;269(2):1370–1374. [PubMed] [Google Scholar]
- Shen S. H., Chrétien P., Bastien L., Slilaty S. N. Primary sequence of the glucanase gene from Oerskovia xanthineolytica. Expression and purification of the enzyme from Escherichia coli. J Biol Chem. 1991 Jan 15;266(2):1058–1063. [PubMed] [Google Scholar]
- Shimoi H., Iimura Y., Obata T., Tadenuma M. Molecular structure of Rarobacter faecitabidus protease I. A yeast-lytic serine protease having mannose-binding activity. J Biol Chem. 1992 Dec 15;267(35):25189–25195. [PubMed] [Google Scholar]
- Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spilliaert R., Hreggvidsson G. O., Kristjansson J. K., Eggertsson G., Palsdottir A. Cloning and sequencing of a Rhodothermus marinus gene, bglA, coding for a thermostable beta-glucanase and its expression in Escherichia coli. Eur J Biochem. 1994 Sep 15;224(3):923–930. doi: 10.1111/j.1432-1033.1994.00923.x. [DOI] [PubMed] [Google Scholar]
- Vrsanská M., Biely P., Krátký Z. Enzymes of the yeast lytic system produced by Arthrobacter GJM-1 bacterium and their role in the lysis of yeast cell walls. Z Allg Mikrobiol. 1977;17(6):465–480. doi: 10.1002/jobm.3630170608. [DOI] [PubMed] [Google Scholar]
- Watanabe T., Kasahara N., Aida K., Tanaka H. Three N-terminal domains of beta-1,3-glucanase A1 are involved in binding to insoluble beta-1,3-glucan. J Bacteriol. 1992 Jan;174(1):186–190. doi: 10.1128/jb.174.1.186-190.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yahata N., Watanabe T., Nakamura Y., Yamamoto Y., Kamimiya S., Tanaka H. Structure of the gene encoding beta-1,3-glucanase A1 of Bacillus circulans WL-12. Gene. 1990 Jan 31;86(1):113–117. doi: 10.1016/0378-1119(90)90122-8. [DOI] [PubMed] [Google Scholar]
- Yamamoto M., Aono R., Horikoshi K. Structure of the 87-kDa beta-1,3-glucanase gene of Bacillus circulans IAM1165 and properties of the enzyme accumulated in the periplasm of Escherichia coli carrying the gene. Biosci Biotechnol Biochem. 1993 Sep;57(9):1518–1525. doi: 10.1271/bbb.57.1518. [DOI] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
- Yasbin R. E., Wilson G. A., Young F. E. Transformation and transfection in lysogenic strains of Bacillus subtilis: evidence for selective induction of prophage in competent cells. J Bacteriol. 1975 Jan;121(1):296–304. doi: 10.1128/jb.121.1.296-304.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]