Abstract
Bacteria play host to a wide range of protein phosphorylation-dephosphorylation systems (Fig. 1). As little as five years ago the known systems were thought to be late-emerging and absolutely prokaryote specific. Today we know that most protein kinases and protein phosphatases are descended from a set of common, and possibly quite ancient, prototypes. Prokaryote- and eukaryote-specific protein kinases and protein phosphatases are rare and represent exceptions, not the rule as previously thought. Commonality suggests that a dynamic and versatile regulatory mechanism was first adapted to the modulation of protein function as early if not earlier than more "basic" mechanisms such as allosterism, etc. The existence of common molecular themes confirms that the microbial world offers a unique, largely untapped library and a powerful set of tools for the understanding of a regulatory mechanism which is crucial to all organisms, tools whose diversity and experimental malleability will provide new avenues for exploring and understanding key modes of cellular regulation.
Full Text
The Full Text of this article is available as a PDF (226.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alex L. A., Borkovich K. A., Simon M. I. Hyphal development in Neurospora crassa: involvement of a two-component histidine kinase. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3416–3421. doi: 10.1073/pnas.93.8.3416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atkinson M., Allen C., Sequeira L. Tyrosine phosphorylation of a membrane protein from Pseudomonas solanacearum. J Bacteriol. 1992 Jul;174(13):4356–4360. doi: 10.1128/jb.174.13.4356-4360.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barton G. J., Cohen P. T., Barford D. Conservation analysis and structure prediction of the protein serine/threonine phosphatases. Sequence similarity with diadenosine tetraphosphatase from Escherichia coli suggests homology to the protein phosphatases. Eur J Biochem. 1994 Feb 15;220(1):225–237. doi: 10.1111/j.1432-1033.1994.tb18618.x. [DOI] [PubMed] [Google Scholar]
- Chang C., Kwok S. F., Bleecker A. B., Meyerowitz E. M. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 1993 Oct 22;262(5133):539–544. doi: 10.1126/science.8211181. [DOI] [PubMed] [Google Scholar]
- Cohen P. T., Brewis N. D., Hughes V., Mann D. J. Protein serine/threonine phosphatases; an expanding family. FEBS Lett. 1990 Aug 1;268(2):355–359. doi: 10.1016/0014-5793(90)81285-v. [DOI] [PubMed] [Google Scholar]
- Cohen P. T., Cohen P. Discovery of a protein phosphatase activity encoded in the genome of bacteriophage lambda. Probable identity with open reading frame 221. Biochem J. 1989 Jun 15;260(3):931–934. doi: 10.1042/bj2600931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen P. T., Collins J. F., Coulson A. F., Berndt N., da Cruz e Silva O. B. Segments of bacteriophage lambda (orf 221) and phi 80 are homologous to genes coding for mammalian protein phosphatases. Gene. 1988 Sep 15;69(1):131–134. doi: 10.1016/0378-1119(88)90385-x. [DOI] [PubMed] [Google Scholar]
- Cozzone A. J. ATP-dependent protein kinases in bacteria. J Cell Biochem. 1993 Jan;51(1):7–13. doi: 10.1002/jcb.240510103. [DOI] [PubMed] [Google Scholar]
- Dadssi M., Cozzone A. J. Evidence of protein-tyrosine kinase activity in the bacterium Acinetobacter calcoaceticus. J Biol Chem. 1990 Dec 5;265(34):20996–20999. [PubMed] [Google Scholar]
- Davie J. R., Wynn R. M., Meng M., Huang Y. S., Aalund G., Chuang D. T., Lau K. S. Expression and characterization of branched-chain alpha-ketoacid dehydrogenase kinase from the rat. Is it a histidine-protein kinase? J Biol Chem. 1995 Aug 25;270(34):19861–19867. doi: 10.1074/jbc.270.34.19861. [DOI] [PubMed] [Google Scholar]
- Doolittle R. F. Convergent evolution: the need to be explicit. Trends Biochem Sci. 1994 Jan;19(1):15–18. doi: 10.1016/0968-0004(94)90167-8. [DOI] [PubMed] [Google Scholar]
- Foster R., Thorner J., Martin G. S. Nucleotidylation, not phosphorylation, is the major source of the phosphotyrosine detected in enteric bacteria. J Bacteriol. 1989 Jan;171(1):272–279. doi: 10.1128/jb.171.1.272-279.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freestone P., Grant S., Toth I., Norris V. Identification of phosphoproteins in Escherichia coli. Mol Microbiol. 1995 Feb;15(3):573–580. doi: 10.1111/j.1365-2958.1995.tb02270.x. [DOI] [PubMed] [Google Scholar]
- Galyov E. E., Håkansson S., Forsberg A., Wolf-Watz H. A secreted protein kinase of Yersinia pseudotuberculosis is an indispensable virulence determinant. Nature. 1993 Feb 25;361(6414):730–732. doi: 10.1038/361730a0. [DOI] [PubMed] [Google Scholar]
- Garnak M., Reeves H. C. Phosphorylation of Isocitrate dehydrogenase of Escherichia coli. Science. 1979 Mar 16;203(4385):1111–1112. doi: 10.1126/science.34215. [DOI] [PubMed] [Google Scholar]
- Guan K. L., Dixon J. E. Evidence for protein-tyrosine-phosphatase catalysis proceeding via a cysteine-phosphate intermediate. J Biol Chem. 1991 Sep 15;266(26):17026–17030. [PubMed] [Google Scholar]
- Guan K. L., Dixon J. E. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science. 1990 Aug 3;249(4968):553–556. doi: 10.1126/science.2166336. [DOI] [PubMed] [Google Scholar]
- Hanks S. K., Quinn A. M. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol. 1991;200:38–62. doi: 10.1016/0076-6879(91)00126-h. [DOI] [PubMed] [Google Scholar]
- Howell L. D., Griffiths C., Slade L. W., Potts M., Kennelly P. J. Substrate specificity of IphP, a cyanobacterial dual-specificity protein phosphatase with MAP kinase phosphatase activity. Biochemistry. 1996 Jun 11;35(23):7566–7572. doi: 10.1021/bi9600409. [DOI] [PubMed] [Google Scholar]
- Kennelly P. J., Oxenrider K. A., Leng J., Cantwell J. S., Zhao N. Identification of a serine/threonine-specific protein phosphatase from the archaebacterium Sulfolobus solfataricus. J Biol Chem. 1993 Mar 25;268(9):6505–6510. [PubMed] [Google Scholar]
- Klumpp D. J., Plank D. W., Bowdin L. J., Stueland C. S., Chung T., LaPorte D. C. Nucleotide sequence of aceK, the gene encoding isocitrate dehydrogenase kinase/phosphatase. J Bacteriol. 1988 Jun;170(6):2763–2769. doi: 10.1128/jb.170.6.2763-2769.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koonin E. V. Bacterial and bacteriophage protein phosphatases. Mol Microbiol. 1993 May;8(4):785–786. doi: 10.1111/j.1365-2958.1993.tb01622.x. [DOI] [PubMed] [Google Scholar]
- Leng J., Cameron A. J., Buckel S., Kennelly P. J. Isolation and cloning of a protein-serine/threonine phosphatase from an archaeon. J Bacteriol. 1995 Nov;177(22):6510–6517. doi: 10.1128/jb.177.22.6510-6517.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levitzki A., Gazit A. Tyrosine kinase inhibition: an approach to drug development. Science. 1995 Mar 24;267(5205):1782–1788. doi: 10.1126/science.7892601. [DOI] [PubMed] [Google Scholar]
- Li Y., Strohl W. R. Cloning, purification, and properties of a phosphotyrosine protein phosphatase from Streptomyces coelicolor A3(2). J Bacteriol. 1996 Jan;178(1):136–142. doi: 10.1128/jb.178.1.136-142.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacKintosh C., Beattie K. A., Klumpp S., Cohen P., Codd G. A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 1990 May 21;264(2):187–192. doi: 10.1016/0014-5793(90)80245-e. [DOI] [PubMed] [Google Scholar]
- Maeda T., Wurgler-Murphy S. M., Saito H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature. 1994 May 19;369(6477):242–245. doi: 10.1038/369242a0. [DOI] [PubMed] [Google Scholar]
- Manai M., Cozzone A. J. Analysis of the protein-kinase activity of Escherichia coli cells. Biochem Biophys Res Commun. 1979 Dec 14;91(3):819–826. doi: 10.1016/0006-291x(79)91953-3. [DOI] [PubMed] [Google Scholar]
- Mann N. H. Protein phosphorylation in cyanobacteria. Microbiology. 1994 Dec;140(Pt 12):3207–3215. doi: 10.1099/13500872-140-12-3207. [DOI] [PubMed] [Google Scholar]
- Matsumoto A., Hong S. K., Ishizuka H., Horinouchi S., Beppu T. Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by a eukaryotic-type protein kinase. Gene. 1994 Aug 19;146(1):47–56. doi: 10.1016/0378-1119(94)90832-x. [DOI] [PubMed] [Google Scholar]
- Muñoz-Dorado J., Inouye S., Inouye M. A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium. Cell. 1991 Nov 29;67(5):995–1006. doi: 10.1016/0092-8674(91)90372-6. [DOI] [PubMed] [Google Scholar]
- Ota I. M., Varshavsky A. A yeast protein similar to bacterial two-component regulators. Science. 1993 Oct 22;262(5133):566–569. doi: 10.1126/science.8211183. [DOI] [PubMed] [Google Scholar]
- Oxenrider K. A., Kennelly P. J. A protein-serine phosphatase from the halophilic archaeon Haloferax volcanii. Biochem Biophys Res Commun. 1993 Aug 16;194(3):1330–1335. doi: 10.1006/bbrc.1993.1970. [DOI] [PubMed] [Google Scholar]
- Oxenrider K. A., Rasche M. E., Thorsteinsson M. V., Kennelly P. J. Inhibition of an archaeal protein phosphatase activity by okadaic acid, microcystin-LR, or calyculin A. FEBS Lett. 1993 Oct 4;331(3):291–295. doi: 10.1016/0014-5793(93)80355-x. [DOI] [PubMed] [Google Scholar]
- Popov K. M., Kedishvili N. Y., Zhao Y., Shimomura Y., Crabb D. W., Harris R. A. Primary structure of pyruvate dehydrogenase kinase establishes a new family of eukaryotic protein kinases. J Biol Chem. 1993 Dec 15;268(35):26602–26606. [PubMed] [Google Scholar]
- Popov K. M., Zhao Y., Shimomura Y., Kuntz M. J., Harris R. A. Branched-chain alpha-ketoacid dehydrogenase kinase. Molecular cloning, expression, and sequence similarity with histidine protein kinases. J Biol Chem. 1992 Jul 5;267(19):13127–13130. [PubMed] [Google Scholar]
- Potts M., Sun H., Mockaitis K., Kennelly P. J., Reed D., Tonks N. K. A protein-tyrosine/serine phosphatase encoded by the genome of the cyanobacterium Nostoc commune UTEX 584. J Biol Chem. 1993 Apr 15;268(11):7632–7635. [PubMed] [Google Scholar]
- Rudolph J., Oesterhelt D. Chemotaxis and phototaxis require a CheA histidine kinase in the archaeon Halobacterium salinarium. EMBO J. 1995 Feb 15;14(4):667–673. doi: 10.1002/j.1460-2075.1995.tb07045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saier M. H., Jr Introduction: protein phosphorylation and signal transduction in bacteria. J Cell Biochem. 1993 Jan;51(1):1–6. doi: 10.1002/jcb.240510102. [DOI] [PubMed] [Google Scholar]
- Smith R. F., King K. Y. Identification of a eukaryotic-like protein kinase gene in Archaebacteria. Protein Sci. 1995 Jan;4(1):126–129. doi: 10.1002/pro.5560040115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swanson R. V., Alex L. A., Simon M. I. Histidine and aspartate phosphorylation: two-component systems and the limits of homology. Trends Biochem Sci. 1994 Nov;19(11):485–490. doi: 10.1016/0968-0004(94)90135-x. [DOI] [PubMed] [Google Scholar]
- Urabe H., Ogawara H. Cloning, sequencing and expression of serine/threonine kinase-encoding genes from Streptomyces coelicolor A3(2). Gene. 1995 Feb 3;153(1):99–104. doi: 10.1016/0378-1119(94)00789-u. [DOI] [PubMed] [Google Scholar]
- Wang J. Y., Koshland D. E., Jr Evidence for protein kinase activities in the prokaryote Salmonella typhimurium. J Biol Chem. 1978 Nov 10;253(21):7605–7608. [PubMed] [Google Scholar]
- Warner K. M., Bullerjahn G. S. Light-Dependent Tyrosine Phosphorylation in the Cyanobacterium Prochlorothrix hollandica. Plant Physiol. 1994 Jun;105(2):629–633. doi: 10.1104/pp.105.2.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westheimer F. H. Why nature chose phosphates. Science. 1987 Mar 6;235(4793):1173–1178. doi: 10.1126/science.2434996. [DOI] [PubMed] [Google Scholar]
- Wo Y. Y., Zhou M. M., Stevis P., Davis J. P., Zhang Z. Y., Van Etten R. L. Cloning, expression, and catalytic mechanism of the low molecular weight phosphotyrosyl protein phosphatase from bovine heart. Biochemistry. 1992 Feb 18;31(6):1712–1721. doi: 10.1021/bi00121a019. [DOI] [PubMed] [Google Scholar]
- Yao V. J., Spudich J. L. Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11915–11919. doi: 10.1073/pnas.89.24.11915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang C. C. A gene encoding a protein related to eukaryotic protein kinases from the filamentous heterocystous cyanobacterium Anabaena PCC 7120. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11840–11844. doi: 10.1073/pnas.90.24.11840. [DOI] [PMC free article] [PubMed] [Google Scholar]