Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Aug;178(16):4765–4772. doi: 10.1128/jb.178.16.4765-4772.1996

A conserved motif in S-layer proteins is involved in peptidoglycan binding in Thermus thermophilus.

G Olabarría 1, J L Carrascosa 1, M A de Pedro 1, J Berenguer 1
PMCID: PMC178255  PMID: 8759836

Abstract

There is experimental evidence to suggest that the 100-kDa S-layer protein from Thermus thermophilus HB8 binds to the peptidoglycan cell wall. This property could be related to the presence of a region (SLH) of homology with other S-layer proteins and extracellular enzymes (A. Lupas, H. Engelhardt, J. Peters, U. Santarius, S. Volker, and W. Baumeister, J. Bacteriol. 176:1224-1233, 1994). By using specific monoclonal antibodies, we show that similar regions are present in different members of the Deinococcus-Thermus phylogenetic group. To analyze the role that the SLH domain plays in vivo and in vitro in T. thermophilus, we have obtained a mutant form (slpA.X) of the S-layer gene (slpA) in which the SLH domain was deleted. The slpA.X gene was inserted into the chromosome of the thermophile by gene replacement, resulting in a mutant which expressed a major membrane protein with the size expected from the construction (90 kDa). This protein was identified as the product of slpA.X by its differential reaction with monoclonal antibodies. Mutants expressing the SlpA.X protein grow as groups of cells, surrounded by a common external envelope of trigonal symmetry that contains the SlpA.X protein as a main component, thus showing the inability of the SLH-defective protein to attach to the underlying material in vivo. In addition, averaged images of SlpA.X-rich fractions showed a regular arrangement, identical to that built up by the wild-type (SlpA) protein in the absence of peptidoglycan. Finally, we demonstrate by Western blotting (immunoblotting) the direct role of the SLH domain in the binding of the S-layer of T. thermophilus HB8 to the peptidoglycan layer.

Full Text

The Full Text of this article is available as a PDF (971.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumeister W., Karrenberg F., Rachel R., Engel A., ten Heggeler B., Saxton W. O. The major cell envelope protein of Micrococcus radiodurans (R1). Structural and chemical characterization. Eur J Biochem. 1982 Jul;125(3):535–544. doi: 10.1111/j.1432-1033.1982.tb06715.x. [DOI] [PubMed] [Google Scholar]
  2. Baumeister W., Wildhaber I., Engelhardt H. Bacterial surface proteins. Some structural, functional and evolutionary aspects. Biophys Chem. 1988 Feb;29(1-2):39–49. doi: 10.1016/0301-4622(88)87023-6. [DOI] [PubMed] [Google Scholar]
  3. Berenguer J., Faraldo M. L., de Pedro M. A. Ca2+-stabilized oligomeric protein complexes are major components of the cell envelope of "Thermus thermophilus" HB8. J Bacteriol. 1988 Jun;170(6):2441–2447. doi: 10.1128/jb.170.6.2441-2447.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Castón J. R., Berenguer J., de Pedro M. A., Carrascosa J. L. S-layer protein from Thermus thermophilus HB8 assembles into porin-like structures. Mol Microbiol. 1993 Jul;9(1):65–75. doi: 10.1111/j.1365-2958.1993.tb01669.x. [DOI] [PubMed] [Google Scholar]
  5. Castón J. R., Olabarría G., Lasa I., Carrascosa J. L., Berenguer J. Differential domain accessibility to monoclonal antibodies in three different morphological assemblies built up by the S-layer protein of Thermus thermophilus HB8. J Bacteriol. 1996 Jun;178(12):3654–3657. doi: 10.1128/jb.178.12.3654-3657.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dagert M., Ehrlich S. D. Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene. 1979 May;6(1):23–28. doi: 10.1016/0378-1119(79)90082-9. [DOI] [PubMed] [Google Scholar]
  7. Faraldo M. L., de Pedro M. A., Berenguer J. Cloning and expression in Escherichia coli of the structural gene coding for the monomeric protein of the S layer of Thermus thermophilus HB8. J Bacteriol. 1991 Sep;173(17):5346–5351. doi: 10.1128/jb.173.17.5346-5351.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Faraldo M. M., de Pedro M. A., Berenguer J. Sequence of the S-layer gene of Thermus thermophilus HB8 and functionality of its promoter in Escherichia coli. J Bacteriol. 1992 Nov;174(22):7458–7462. doi: 10.1128/jb.174.22.7458-7462.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fernández-Herrero L. A., Badet-Denisot M. A., Badet B., Berenguer J. glmS of Thermus thermophilus HB8: an essential gene for cell-wall synthesis identified immediately upstream of the S-layer gene. Mol Microbiol. 1995 Jul;17(1):1–12. doi: 10.1111/j.1365-2958.1995.mmi_17010001.x. [DOI] [PubMed] [Google Scholar]
  10. Fernández-Herrero L. A., Olabarría G., Castón J. R., Lasa I., Berenguer J. Horizontal transference of S-layer genes within Thermus thermophilus. J Bacteriol. 1995 Oct;177(19):5460–5466. doi: 10.1128/jb.177.19.5460-5466.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Koyama Y., Hoshino T., Tomizuka N., Furukawa K. Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J Bacteriol. 1986 Apr;166(1):338–340. doi: 10.1128/jb.166.1.338-340.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  14. Lasa I., Castón J. R., Fernández-Herrero L. A., de Pedro M. A., Berenguer J. Insertional mutagenesis in the extreme thermophilic eubacteria Thermus thermophilus HB8. Mol Microbiol. 1992 Jun;6(11):1555–1564. doi: 10.1111/j.1365-2958.1992.tb00877.x. [DOI] [PubMed] [Google Scholar]
  15. Lasa I., de Grado M., de Pedro M. A., Berenguer J. Development of Thermus-Escherichia shuttle vectors and their use for expression of the Clostridium thermocellum celA gene in Thermus thermophilus. J Bacteriol. 1992 Oct;174(20):6424–6431. doi: 10.1128/jb.174.20.6424-6431.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lupas A., Engelhardt H., Peters J., Santarius U., Volker S., Baumeister W. Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J Bacteriol. 1994 Mar;176(5):1224–1233. doi: 10.1128/jb.176.5.1224-1233.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Messner P., Sleytr U. B. Crystalline bacterial cell-surface layers. Adv Microb Physiol. 1992;33:213–275. doi: 10.1016/s0065-2911(08)60218-0. [DOI] [PubMed] [Google Scholar]
  18. Quintela J. C., Pittenauer E., Allmaier G., Arán V., de Pedro M. A. Structure of peptidoglycan from Thermus thermophilus HB8. J Bacteriol. 1995 Sep;177(17):4947–4962. doi: 10.1128/jb.177.17.4947-4962.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Risco C., Antón I. M., Suñ C., Pedregosa A. M., Martín-Alonso J. M., Parra F., Carrascosa J. L., Enjuanes L. Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the carboxy-terminal region on the external surface of the virion. J Virol. 1995 Sep;69(9):5269–5277. doi: 10.1128/jvi.69.9.5269-5277.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Saxton W. O., Baumeister W. Principles of organization in S layers. J Mol Biol. 1986 Jan 20;187(2):251–253. doi: 10.1016/0022-2836(86)90232-9. [DOI] [PubMed] [Google Scholar]
  22. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES