Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Aug;178(16):4773–4777. doi: 10.1128/jb.178.16.4773-4777.1996

High-affinity maltose/trehalose transport system in the hyperthermophilic archaeon Thermococcus litoralis.

K B Xavier 1, L O Martins 1, R Peist 1, M Kossmann 1, W Boos 1, H Santos 1
PMCID: PMC178256  PMID: 8759837

Abstract

The hyperthermophilic marine archaeon Thermococcus litoralis exhibits high-affinity transport activity for maltose and trehalose at 85 degrees C. The K(m) for maltose transport was 22 nM, and that for trehalose was 17 nM. In cells that had been grown on peptone plus yeast extract, the Vmax for maltose uptake ranged from 3.2 to 7.5 nmol/min/mg of protein in different cell cultures. Cells grown in peptone without yeast extract did not show significant maltose or trehalose uptake. We found that the compound in yeast extract responsible for the induction of the maltose and trehalose transport system was trehalose. [14C]maltose uptake at 100 nM was not significantly inhibited by glucose, sucrose, or maltotriose at a 100 microM concentration but was completely inhibited by trehalose and maltose. The inhibitor constant, Ki, of trehalose for inhibiting maltose uptake was 21 nM. In contrast, the ability of maltose to inhibit the uptake of trehalose was not equally strong. With 20 nM [14C]trehalose as the substrate, a 10-fold excess of maltose was necessary to inhibit uptake to 50%. However, full inhibition was observed at 2 microM maltose. The detergent-solubilized membranes of trehalose-induced cells contained a high-affinity binding protein for maltose and trehalose, with an M(r) of 48,000, that exhibited the same substrate specificity as the transport system found in whole cells. We conclude that maltose and trehalose are transported by the same high-affinity membrane-associated system. This represents the first report on sugar transport in any hyperthermophilic archaeon.

Full Text

The Full Text of this article is available as a PDF (250.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreotti G., Cubellis M. V., Nitti G., Sannia G., Mai X., Marino G., Adams M. W. Characterization of aromatic aminotransferases from the hyperthermophilic archaeon Thermococcus litoralis. Eur J Biochem. 1994 Mar 1;220(2):543–549. doi: 10.1111/j.1432-1033.1994.tb18654.x. [DOI] [PubMed] [Google Scholar]
  2. Boos W., Ehmann U., Bremer E., Middendorf A., Postma P. Trehalase of Escherichia coli. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions. J Biol Chem. 1987 Sep 25;262(27):13212–13218. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Brand B., Boos W. Convenient preparative synthesis of [14C]trehalose from [14C]glucose by intact Escherichia coli cells. Appl Environ Microbiol. 1989 Sep;55(9):2414–2415. doi: 10.1128/aem.55.9.2414-2415.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown S. H., Kelly R. M. Characterization of Amylolytic Enzymes, Having Both alpha-1,4 and alpha-1,6 Hydrolytic Activity, from the Thermophilic Archaea Pyrococcus furiosus and Thermococcus litoralis. Appl Environ Microbiol. 1993 Aug;59(8):2614–2621. doi: 10.1128/aem.59.8.2614-2621.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davidson A. L., Nikaido H. Overproduction, solubilization, and reconstitution of the maltose transport system from Escherichia coli. J Biol Chem. 1990 Mar 15;265(8):4254–4260. [PubMed] [Google Scholar]
  7. Gilson E., Alloing G., Schmidt T., Claverys J. P., Dudler R., Hofnung M. Evidence for high affinity binding-protein dependent transport systems in gram-positive bacteria and in Mycoplasma. EMBO J. 1988 Dec 1;7(12):3971–3974. doi: 10.1002/j.1460-2075.1988.tb03284.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kellermann O., Szmelcman S. Active transport of maltose in Escherichia coli K12. Involvement of a "periplasmic" maltose binding protein. Eur J Biochem. 1974 Aug 15;47(1):139–149. doi: 10.1111/j.1432-1033.1974.tb03677.x. [DOI] [PubMed] [Google Scholar]
  9. Kelly R. M., Adams M. W. Metabolism in hyperthermophilic microorganisms. Antonie Van Leeuwenhoek. 1994;66(1-3):247–270. doi: 10.1007/BF00871643. [DOI] [PubMed] [Google Scholar]
  10. Klein W., Boos W. Induction of the lambda receptor is essential for effective uptake of trehalose in Escherichia coli. J Bacteriol. 1993 Mar;175(6):1682–1686. doi: 10.1128/jb.175.6.1682-1686.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klein W., Horlacher R., Boos W. Molecular analysis of treB encoding the Escherichia coli enzyme II specific for trehalose. J Bacteriol. 1995 Jul;177(14):4043–4052. doi: 10.1128/jb.177.14.4043-4052.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kletzin A., Mukund S., Kelley-Crouse T. L., Chan M. K., Rees D. C., Adams M. W. Molecular characterization of the genes encoding the tungsten-containing aldehyde ferredoxin oxidoreductase from Pyrococcus furiosus and formaldehyde ferredoxin oxidoreductase from Thermococcus litoralis. J Bacteriol. 1995 Aug;177(16):4817–4819. doi: 10.1128/jb.177.16.4817-4819.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Ma K., Robb F. T., Adams M. W. Purification and characterization of NADP-specific alcohol dehydrogenase and glutamate dehydrogenase from the hyperthermophilic archaeon Thermococcus litoralis. Appl Environ Microbiol. 1994 Feb;60(2):562–568. doi: 10.1128/aem.60.2.562-568.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maréchal L. R. Transport and metabolism of trehalose in Escherichia coli and Salmonella typhimurium. Arch Microbiol. 1984 Jan;137(1):70–73. doi: 10.1007/BF00425810. [DOI] [PubMed] [Google Scholar]
  16. Mukund S., Adams M. W. Characterization of a novel tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon, Thermococcus litoralis. A role for tungsten in peptide catabolism. J Biol Chem. 1993 Jun 25;268(18):13592–13600. [PubMed] [Google Scholar]
  17. Neuhoff V., Arold N., Taube D., Ehrhardt W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis. 1988 Jun;9(6):255–262. doi: 10.1002/elps.1150090603. [DOI] [PubMed] [Google Scholar]
  18. Nikaido H. Maltose transport system of Escherichia coli: an ABC-type transporter. FEBS Lett. 1994 Jun 6;346(1):55–58. doi: 10.1016/0014-5793(94)00315-7. [DOI] [PubMed] [Google Scholar]
  19. Richarme G., Kepes A. Study of binding protein-ligand interaction by ammonium sulfate-assisted adsorption on cellulose esters filters. Biochim Biophys Acta. 1983 Jan 12;742(1):16–24. doi: 10.1016/0167-4838(83)90353-9. [DOI] [PubMed] [Google Scholar]
  20. Robinson K. A., Robb F. T., Schreier H. J. Isolation of maltose-regulated genes from the hyperthermophilic archaeum, Pyrococcus furiosus, by subtractive hybridization. Gene. 1994 Oct 11;148(1):137–141. doi: 10.1016/0378-1119(94)90247-x. [DOI] [PubMed] [Google Scholar]
  21. Robinson K. A., Schreier H. J. Isolation, sequence and characterization of the maltose-regulated mlrA gene from the hyperthermophilic archaeum Pyrococcus furiosus. Gene. 1994 Dec 30;151(1-2):173–176. doi: 10.1016/0378-1119(94)90651-3. [DOI] [PubMed] [Google Scholar]
  22. Russell R. R., Aduse-Opoku J., Sutcliffe I. C., Tao L., Ferretti J. J. A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. J Biol Chem. 1992 Mar 5;267(7):4631–4637. [PubMed] [Google Scholar]
  23. Sahm K., Matuschek M., Müller H., Mitchell W. J., Bahl H. Molecular analysis of the amy gene locus of Thermoanaerobacterium thermosulfurigenes EM1 encoding starch-degrading enzymes and a binding protein-dependent maltose transport system. J Bacteriol. 1996 Feb;178(4):1039–1046. doi: 10.1128/jb.178.4.1039-1046.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shuman H. A., Panagiotidis C. H. Tinkering with transporters: periplasmic binding protein-dependent maltose transport in E. coli. J Bioenerg Biomembr. 1993 Dec;25(6):613–620. doi: 10.1007/BF00770248. [DOI] [PubMed] [Google Scholar]
  25. Szmelcman S., Schwartz M., Silhavy T. J., Boos W. Maltose transport in Escherichia coli K12. A comparison of transport kinetics in wild-type and lambda-resistant mutants as measured by fluorescence quenching. Eur J Biochem. 1976 May 17;65(1):13–19. doi: 10.1111/j.1432-1033.1976.tb10383.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES