Abstract
The fatty acid synthase (FAS) from Brevibacterium ammoniagenes is a homohexameric multienzyme complex that catalyzes the synthesis of both saturated and unsaturated fatty acids. By immunological screening of a B. ammoniagenes expression library, an fas DNA fragment was isolated and subsequently used to clone the entire gene together with its flanking sequences. Within 10,525 bp of sequenced DNA, the 9,189-bp FAS coding region was identified, corresponding to a protein of 3,063 amino acids with a molecular mass of 324,910 Da. This gene (fasA) encodes, at its 5' end, the same amino acid sequence as is observed with purified B. ammoniagenes FAS. A second reading frame encoding another B. ammoniagenes FAS variant (FasB) had been identified previously. Both sequences are colinear and exhibit 61 and 47% identity at the DNA and protein levels, respectively. By using specific antibodies raised against a unique peptide sequence of FasB, this enzyme was shown to represent only 5 to 10% of the cellular FAS protein. Insertional inactivation of the FasB coding sequence causes no defective phenotype, while fasA disruptants require oleic acid for growth. Correspondingly, oleate-dependent B. ammoniagenes cells obtained by ethyl methanesulfonate mutagenesis were complemented by transformation with fasA DNA but not with fasB DNA. The data indicate that B. ammoniagenes contains two related though differently expressed type I FASs. FasA represents the bulk of cellular FAS protein and catalyzes the synthesis of both saturated and unsaturated fatty acids, while the minor variant, FasB, cannot catalyze the synthesis of oleic acid.
Full Text
The Full Text of this article is available as a PDF (541.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cronan J. E., Jr, Li W. B., Coleman R., Narasimhan M., de Mendoza D., Schwab J. M. Derived amino acid sequence and identification of active site residues of Escherichia coli beta-hydroxydecanoyl thioester dehydrase. J Biol Chem. 1988 Apr 5;263(10):4641–4646. [PubMed] [Google Scholar]
- Engeser H., Hübner K., Straub J., Lynen F. Identity of malonyl and palmitoyl transferase of fatty acid synthetase from yeast. 2. A comparison of active-site peptides. Eur J Biochem. 1979 Nov;101(2):413–422. doi: 10.1111/j.1432-1033.1979.tb19734.x. [DOI] [PubMed] [Google Scholar]
- Kawaguchi A., Okuda S. Fatty acid synthetase from Brevibacterium ammoniagenes: formation of monounsaturated fatty acids by a multienzyme complex. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3180–3183. doi: 10.1073/pnas.74.8.3180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kikuchi S., Rainwater D. L., Kolattukudy P. E. Purification and characterization of an unusually large fatty acid synthase from Mycobacterium tuberculosis var. bovis BCG. Arch Biochem Biophys. 1992 Jun;295(2):318–326. doi: 10.1016/0003-9861(92)90524-z. [DOI] [PubMed] [Google Scholar]
- Kresze G. B., Steber L., Oesterhelt D., Lynen F. Reaction of yeast fatty acid synthetase with iodoacetamide. 2. Identification of the amino acid residues reacting with iodoacetamide and primary structure of a peptide containing the peripheral sulfhydryl group. Eur J Biochem. 1977 Sep 15;79(1):181–190. doi: 10.1111/j.1432-1033.1977.tb11796.x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Liebl W., Bayerl A., Schein B., Stillner U., Schleifer K. H. High efficiency electroporation of intact Corynebacterium glutamicum cells. FEMS Microbiol Lett. 1989 Dec;53(3):299–303. doi: 10.1016/0378-1097(89)90234-6. [DOI] [PubMed] [Google Scholar]
- Liu F. T., Zinnecker M., Hamaoka T., Katz D. H. New procedures for preparation and isolation of conjugates of proteins and a synthetic copolymer of D-amino acids and immunochemical characterization of such conjugates. Biochemistry. 1979 Feb 20;18(4):690–693. doi: 10.1021/bi00571a022. [DOI] [PubMed] [Google Scholar]
- Lynen F. On the structure of fatty acid synthetase of yeast. Eur J Biochem. 1980 Dec;112(3):431–442. doi: 10.1111/j.1432-1033.1980.tb06105.x. [DOI] [PubMed] [Google Scholar]
- Magnuson K., Jackowski S., Rock C. O., Cronan J. E., Jr Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Rev. 1993 Sep;57(3):522–542. doi: 10.1128/mr.57.3.522-542.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meurer G., Biermann G., Schütz A., Harth S., Schweizer E. Molecular structure of the multifunctional fatty acid synthetase gene of Brevibacterium ammoniagenes: its sequence of catalytic domains is formally consistent with a head-to-tail fusion of the two yeast genes FAS1 and FAS2. Mol Gen Genet. 1992 Mar;232(1):106–116. doi: 10.1007/BF00299143. [DOI] [PubMed] [Google Scholar]
- Morishima N., Ikai A., Noda H., Kawaguchi A. Structure of bacterial fatty acid synthetase from Brevibacterium ammoniagenes. Biochim Biophys Acta. 1982 Nov 19;708(3):305–312. doi: 10.1016/0167-4838(82)90441-1. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schweizer E., Piccinini F., Duba C., Günther S., Ritter E., Lynen F. Die Malonyl-Bindungsstellen des Fettsäuresynthetase-Komplexes aus Hefe. Eur J Biochem. 1970 Sep;15(3):483–499. doi: 10.1111/j.1432-1033.1970.tb01031.x. [DOI] [PubMed] [Google Scholar]
- Schweizer M., Lebert C., Höltke J., Roberts L. M., Schweizer E. Molecular cloning of the yeast fatty acid synthetase genes, FAS1 and FAS2: illustrating the structure of the FAS1 cluster gene by transcript mapping and transformation studies. Mol Gen Genet. 1984;194(3):457–465. doi: 10.1007/BF00425558. [DOI] [PubMed] [Google Scholar]
- Schäfer A., Kalinowski J., Simon R., Seep-Feldhaus A. H., Pühler A. High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria. J Bacteriol. 1990 Mar;172(3):1663–1666. doi: 10.1128/jb.172.3.1663-1666.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schüller H. J., Förtsch B., Rautenstrauss B., Wolf D. H., Schweizer E. Differential proteolytic sensitivity of yeast fatty acid synthetase subunits alpha and beta contributing to a balanced ratio of both fatty acid synthetase components. Eur J Biochem. 1992 Feb 1;203(3):607–614. doi: 10.1111/j.1432-1033.1992.tb16590.x. [DOI] [PubMed] [Google Scholar]
- Seiler H. Identification key for coryneform bacteria derived by numerical taxonomic studies. J Gen Microbiol. 1983 May;129(5):1433–1471. doi: 10.1099/00221287-129-5-1433. [DOI] [PubMed] [Google Scholar]