Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Aug;178(16):4794–4800. doi: 10.1128/jb.178.16.4794-4800.1996

Bacillus subtilis acyl carrier protein is encoded in a cluster of lipid biosynthesis genes.

H R Morbidoni 1, D de Mendoza 1, J E Cronan Jr 1
PMCID: PMC178259  PMID: 8759840

Abstract

A cluster of Bacillus subtilis fatty acid synthetic genes was isolated by complementation of an Escherichia coli fabD mutant encoding a thermosensitive malonyl coenzyme A-acyl carrier protein transacylase. The B. subtilis genomic segment contains genes that encode three fatty acid synthetic proteins, malonyl coenzyme A-acyl carrier protein transacylase (fabD), 3-ketoacyl-acyl carrier protein reductase (fabG), and the N-terminal 14 amino acid residues of acyl carrier protein (acpP). Also present is a sequence that encodes a homolog of E. coli plsX, a gene that plays a poorly understood role in phospholipid synthesis. The B. subtilis plsX gene weakly complemented an E. coli plsX mutant. The order of genes in the cluster is plsX fabD fabG acpP, the same order found in E. coli, except that in E. coli the fabH gene lies between plsX and fabD. The absence of fabH in the B. subtilis cluster is consistent with the different fatty acid compositions of the two organisms. The amino acid sequence of B. subtilis acyl carrier protein was obtained by sequencing the purified protein, and the sequence obtained strongly resembled that of E. coli acyl carrier protein, except that most of the protein retained the initiating methionine residue. The B. subtilis fab cluster was mapped to the 135 to 145 degrees region of the chromosome.

Full Text

The Full Text of this article is available as a PDF (405.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azevedo V., Alvarez E., Zumstein E., Damiani G., Sgaramella V., Ehrlich S. D., Serror P. An ordered collection of Bacillus subtilis DNA segments cloned in yeast artificial chromosomes. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6047–6051. doi: 10.1073/pnas.90.13.6047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ben-Bassat A., Bauer K., Chang S. Y., Myambo K., Boosman A., Chang S. Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J Bacteriol. 1987 Feb;169(2):751–757. doi: 10.1128/jb.169.2.751-757.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Butterworth P. H., Bloch K. Comparative aspects of fatty acid synthesis in Bacillus subtilis and Escherichia coli. Eur J Biochem. 1970 Feb;12(3):496–501. doi: 10.1111/j.1432-1033.1970.tb00878.x. [DOI] [PubMed] [Google Scholar]
  4. Carty S. M., Colbeau A., Vignais P. M., Larson T. J. Identification of the rpmF-plsX-fabH genes of Rhodobacter capsulatus. FEMS Microbiol Lett. 1994 May 15;118(3):227–231. doi: 10.1111/j.1574-6968.1994.tb06832.x. [DOI] [PubMed] [Google Scholar]
  5. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  6. Hirel P. H., Schmitter M. J., Dessen P., Fayat G., Blanquet S. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8247–8251. doi: 10.1073/pnas.86.21.8247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hopwood D. A., Sherman D. H. Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet. 1990;24:37–66. doi: 10.1146/annurev.ge.24.120190.000345. [DOI] [PubMed] [Google Scholar]
  8. Horikoshi K., Doi R. H. The NH2-terminal residues of Bacillus subtilis proteins. J Biol Chem. 1968 May 10;243(9):2381–2384. [PubMed] [Google Scholar]
  9. Jackowski S., Rock C. O. Consequences of reduced intracellular coenzyme A content in Escherichia coli. J Bacteriol. 1986 Jun;166(3):866–871. doi: 10.1128/jb.166.3.866-871.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaneda T. Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol Rev. 1977 Jun;41(2):391–418. doi: 10.1128/br.41.2.391-418.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Keating D. H., Carey M. R., Cronan J. E., Jr The unmodified (apo) form of Escherichia coli acyl carrier protein is a potent inhibitor of cell growth. J Biol Chem. 1995 Sep 22;270(38):22229–22235. doi: 10.1074/jbc.270.38.22229. [DOI] [PubMed] [Google Scholar]
  12. Larson T. J., Ludtke D. N., Bell R. M. sn-Glycerol-3-phosphate auxotrophy of plsB strains of Escherichia coli: evidence that a second mutation, plsX, is required. J Bacteriol. 1984 Nov;160(2):711–717. doi: 10.1128/jb.160.2.711-717.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Magnuson K., Jackowski S., Rock C. O., Cronan J. E., Jr Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Rev. 1993 Sep;57(3):522–542. doi: 10.1128/mr.57.3.522-542.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Magnuson K., Oh W., Larson T. J., Cronan J. E., Jr Cloning and nucleotide sequence of the fabD gene encoding malonyl coenzyme A-acyl carrier protein transacylase of Escherichia coli. FEBS Lett. 1992 Mar 16;299(3):262–266. doi: 10.1016/0014-5793(92)80128-4. [DOI] [PubMed] [Google Scholar]
  15. Milligan D. L., Koshland D. E., Jr The amino terminus of the aspartate chemoreceptor is formylmethionine. J Biol Chem. 1990 Mar 15;265(8):4455–4460. [PubMed] [Google Scholar]
  16. Morbidoni H. R., de Mendoza D., Cronan J. E., Jr Synthesis of sn-glycerol 3-phosphate, a key precursor of membrane lipids, in Bacillus subtilis. J Bacteriol. 1995 Oct;177(20):5899–5905. doi: 10.1128/jb.177.20.5899-5905.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mueller J. P., Mathiopoulos C., Slack F. J., Sonenshein A. L. Identification of Bacillus subtilis adaptive response genes by subtractive differential hybridization. Res Microbiol. 1991 Sep-Oct;142(7-8):805–813. doi: 10.1016/0923-2508(91)90059-j. [DOI] [PubMed] [Google Scholar]
  18. Oh W., Larson T. J. Physical locations of genes in the rne (ams)-rpmF-plsX-fab region of the Escherichia coli K-12 chromosome. J Bacteriol. 1992 Dec;174(23):7873–7874. doi: 10.1128/jb.174.23.7873-7874.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Oku H., Kaneda T. Biosynthesis of branched-chain fatty acids in Bacillus subtilis. A decarboxylase is essential for branched-chain fatty acid synthetase. J Biol Chem. 1988 Dec 5;263(34):18386–18396. [PubMed] [Google Scholar]
  20. Papov V. V., Gravina S. A., Mieyal J. J., Biemann K. The primary structure and properties of thioltransferase (glutaredoxin) from human red blood cells. Protein Sci. 1994 Mar;3(3):428–434. doi: 10.1002/pro.5560030307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Post-Beittenmiller D., Jaworski J. G., Ohlrogge J. B. In vivo pools of free and acylated acyl carrier proteins in spinach. Evidence for sites of regulation of fatty acid biosynthesis. J Biol Chem. 1991 Jan 25;266(3):1858–1865. [PubMed] [Google Scholar]
  22. Rawlings M., Cronan J. E., Jr The gene encoding Escherichia coli acyl carrier protein lies within a cluster of fatty acid biosynthetic genes. J Biol Chem. 1992 Mar 25;267(9):5751–5754. [PubMed] [Google Scholar]
  23. Revill W. P., Bibb M. J., Hopwood D. A. Purification of a malonyltransferase from Streptomyces coelicolor A3(2) and analysis of its genetic determinant. J Bacteriol. 1995 Jul;177(14):3946–3952. doi: 10.1128/jb.177.14.3946-3952.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Revill W. P., Leadlay P. F. Cloning, characterization, and high-level expression in Escherichia coli of the Saccharopolyspora erythraea gene encoding an acyl carrier protein potentially involved in fatty acid biosynthesis. J Bacteriol. 1991 Jul;173(14):4379–4385. doi: 10.1128/jb.173.14.4379-4385.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rock C. O., Cronan J. E., Jr Acyl carrier protein from Escherichia coli. Methods Enzymol. 1981;71(Pt 100):341–351. doi: 10.1016/0076-6879(81)71043-7. [DOI] [PubMed] [Google Scholar]
  26. Serre L., Verbree E. C., Dauter Z., Stuitje A. R., Derewenda Z. S. The Escherichia coli malonyl-CoA:acyl carrier protein transacylase at 1.5-A resolution. Crystal structure of a fatty acid synthase component. J Biol Chem. 1995 Jun 2;270(22):12961–12964. doi: 10.1074/jbc.270.22.12961. [DOI] [PubMed] [Google Scholar]
  27. Shen Z., Byers D. M. Isolation of Vibrio harveyi acyl carrier protein and the fabG, acpP, and fabF genes involved in fatty acid biosynthesis. J Bacteriol. 1996 Jan;178(2):571–573. doi: 10.1128/jb.178.2.571-573.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Summers R. G., Ali A., Shen B., Wessel W. A., Hutchinson C. R. Malonyl-coenzyme A:acyl carrier protein acyltransferase of Streptomyces glaucescens: a possible link between fatty acid and polyketide biosynthesis. Biochemistry. 1995 Jul 25;34(29):9389–9402. doi: 10.1021/bi00029a015. [DOI] [PubMed] [Google Scholar]
  29. Takeda M., Webster R. E. Protein chain initiation and deformylation in B. subtilis homogenates. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1487–1494. doi: 10.1073/pnas.60.4.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Verwoert I. I., Verhagen E. F., van der Linden K. H., Verbree E. C., Nijkamp H. J., Stuitje A. R. Molecular characterization of an Escherichia coli mutant with a temperature-sensitive malonyl coenzyme A-acyl carrier protein transacylase. FEBS Lett. 1994 Jul 18;348(3):311–316. doi: 10.1016/0014-5793(94)00630-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES