Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Aug;178(16):4847–4853. doi: 10.1128/jb.178.16.4847-4853.1996

A study of mycobacterial transcriptional apparatus: identification of novel features in promoter elements.

M D Bashyam 1, D Kaushal 1, S K Dasgupta 1, A K Tyagi 1
PMCID: PMC178266  PMID: 8759847

Abstract

Our earlier studies on transcriptional signals of mycobacteria had revealed that (i) strong promoters occur less frequently in the slowly growing pathogen Mycobacterium tuberculosis H37Rv than in the fast-growing saprophyte M. smegmatis and (ii) mycobacterial promoters function poorly in Escherichia coli. We now present evidence that RNA polymerases of M. smegmatis, M. tuberculosis, and M. bovis BCG recognize promoter elements with comparable efficiencies. Analysis of these randomly isolated mycobacterial promoters by DNA sequencing, primer extension, and deletion experiments revealed that their -10 regions are highly similar to those of E. coli promoters, in contrast to their -35 regions, which can tolerate a greater variety of sequences, owing presumably to the presence of multiple sigma factors with different or overlapping specificities for -35 regions, as reported earlier for the Streptomyces promoters. A comparison of the -10 and -35 binding domains of MysA, HrdB, and RpoD (the principal sigma factors of M. smegmatis, Streptomyces aureofaciens, and E. coli, respectively) showed that all three sigma factors have nearly identical -10 binding domains. However, the -35 binding domains of the principal mycobacterial and streptomycete sigma factors, although nearly identical to each other, are vastly different from the corresponding region of the sigma factor of E. coli. Thus, the transcriptional signals of mycobacteria have features in common with Streptomyces promoters but differ from those of E. coli because of major differences in the -35 regions of the promoters and the corresponding binding domain in the sigma factor.

Full Text

The Full Text of this article is available as a PDF (446.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bashyam M. D., Tyagi A. An efficient and high-yielding method for isolation of RNA from mycobacteria. Biotechniques. 1994 Nov;17(5):834–836. [PubMed] [Google Scholar]
  2. Bloom B. R., Murray C. J. Tuberculosis: commentary on a reemergent killer. Science. 1992 Aug 21;257(5073):1055–1064. doi: 10.1126/science.257.5073.1055. [DOI] [PubMed] [Google Scholar]
  3. Buttner M. J. RNA polymerase heterogeneity in Streptomyces coelicolor A3(2). Mol Microbiol. 1989 Nov;3(11):1653–1659. doi: 10.1111/j.1365-2958.1989.tb00151.x. [DOI] [PubMed] [Google Scholar]
  4. Chaisson R. E., Slutkin G. Tuberculosis and human immunodeficiency virus infection. J Infect Dis. 1989 Jan;159(1):96–100. doi: 10.1093/infdis/159.1.96. [DOI] [PubMed] [Google Scholar]
  5. Cirillo J. D., Weisbrod T. R., Pascopella L., Bloom B. R., Jacobs W. R., Jr Isolation and characterization of the aspartokinase and aspartate semialdehyde dehydrogenase operon from mycobacteria. Mol Microbiol. 1994 Feb;11(4):629–639. doi: 10.1111/j.1365-2958.1994.tb00342.x. [DOI] [PubMed] [Google Scholar]
  6. Culliton B. J. Drug-resistant TB may bring epidemic. Nature. 1992 Apr 9;356(6369):473–473. doi: 10.1038/356473a0. [DOI] [PubMed] [Google Scholar]
  7. Das Gupta S. K., Bashyam M. D., Tyagi A. K. Cloning and assessment of mycobacterial promoters by using a plasmid shuttle vector. J Bacteriol. 1993 Aug;175(16):5186–5192. doi: 10.1128/jb.175.16.5186-5192.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harshey R. M., Ramakrishnan T. Rate of ribonucleic acid chain growth in Mycobacterium tuberculosis H37Rv. J Bacteriol. 1977 Feb;129(2):616–622. doi: 10.1128/jb.129.2.616-622.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jacobs W. R., Jr, Kalpana G. V., Cirillo J. D., Pascopella L., Snapper S. B., Udani R. A., Jones W., Barletta R. G., Bloom B. R. Genetic systems for mycobacteria. Methods Enzymol. 1991;204:537–555. doi: 10.1016/0076-6879(91)04027-l. [DOI] [PubMed] [Google Scholar]
  11. Ji Y. E., Colston M. J., Cox R. A. Nucleotide sequence and secondary structures of precursor 16S rRNA of slow-growing mycobacteria. Microbiology. 1994 Jan;140(Pt 1):123–132. doi: 10.1099/13500872-140-1-123. [DOI] [PubMed] [Google Scholar]
  12. Ji Y. E., Colston M. J., Cox R. A. The ribosomal RNA (rrn) operons of fast-growing mycobacteria: primary and secondary structures and their relation to rrn operons of pathogenic slow-growers. Microbiology. 1994 Oct;140(Pt 10):2829–2840. doi: 10.1099/00221287-140-10-2829. [DOI] [PubMed] [Google Scholar]
  13. Kieser T., Moss M. T., Dale J. W., Hopwood D. A. Cloning and expression of Mycobacterium bovis BCG DNA in "Streptomyces lividans". J Bacteriol. 1986 Oct;168(1):72–80. doi: 10.1128/jb.168.1.72-80.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kong T. H., Coates A. R., Butcher P. D., Hickman C. J., Shinnick T. M. Mycobacterium tuberculosis expresses two chaperonin-60 homologs. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2608–2612. doi: 10.1073/pnas.90.7.2608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kormanec J., Farkasovský M., Potúcková L. Four genes in Streptomyces aureofaciens containing a domain characteristic of principal sigma factors. Gene. 1992 Dec 1;122(1):63–70. doi: 10.1016/0378-1119(92)90032-k. [DOI] [PubMed] [Google Scholar]
  16. Kremer L., Baulard A., Estaquier J., Content J., Capron A., Locht C. Analysis of the Mycobacterium tuberculosis 85A antigen promoter region. J Bacteriol. 1995 Feb;177(3):642–653. doi: 10.1128/jb.177.3.642-653.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Levin M. E., Hatfull G. F. Mycobacterium smegmatis RNA polymerase: DNA supercoiling, action of rifampicin and mechanism of rifampicin resistance. Mol Microbiol. 1993 Apr;8(2):277–285. doi: 10.1111/j.1365-2958.1993.tb01572.x. [DOI] [PubMed] [Google Scholar]
  18. Lisser S., Margalit H. Compilation of E. coli mRNA promoter sequences. Nucleic Acids Res. 1993 Apr 11;21(7):1507–1516. doi: 10.1093/nar/21.7.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lonetto M., Gribskov M., Gross C. A. The sigma 70 family: sequence conservation and evolutionary relationships. J Bacteriol. 1992 Jun;174(12):3843–3849. doi: 10.1128/jb.174.12.3843-3849.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Murray A., Winter N., Lagranderie M., Hill D. F., Rauzier J., Timm J., Leclerc C., Moriarty K. M., Gheorghiu M., Gicquel B. Expression of Escherichia coli beta-galactosidase in Mycobacterium bovis BCG using an expression system isolated from Mycobacterium paratuberculosis which induced humoral and cellular immune responses. Mol Microbiol. 1992 Nov;6(22):3331–3342. doi: 10.1111/j.1365-2958.1992.tb02201.x. [DOI] [PubMed] [Google Scholar]
  21. Nesbit C. E., Levin M. E., Donnelly-Wu M. K., Hatfull G. F. Transcriptional regulation of repressor synthesis in mycobacteriophage L5. Mol Microbiol. 1995 Sep;17(6):1045–1056. doi: 10.1111/j.1365-2958.1995.mmi_17061045.x. [DOI] [PubMed] [Google Scholar]
  22. Predich M., Doukhan L., Nair G., Smith I. Characterization of RNA polymerase and two sigma-factor genes from Mycobacterium smegmatis. Mol Microbiol. 1995 Jan;15(2):355–366. doi: 10.1111/j.1365-2958.1995.tb02249.x. [DOI] [PubMed] [Google Scholar]
  23. Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979;13:319–353. doi: 10.1146/annurev.ge.13.120179.001535. [DOI] [PubMed] [Google Scholar]
  24. Sarkis G. J., Jacobs W. R., Jr, Hatfull G. F. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol Microbiol. 1995 Mar;15(6):1055–1067. doi: 10.1111/j.1365-2958.1995.tb02281.x. [DOI] [PubMed] [Google Scholar]
  25. Sela S., Clark-Curtiss J. E. Cloning and characterization of the Mycobacterium leprae putative ribosomal RNA promoter in Escherichia coli. Gene. 1991 Feb 1;98(1):123–127. doi: 10.1016/0378-1119(91)90114-q. [DOI] [PubMed] [Google Scholar]
  26. Strohl W. R. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res. 1992 Mar 11;20(5):961–974. doi: 10.1093/nar/20.5.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Timm J., Lim E. M., Gicquel B. Escherichia coli-mycobacteria shuttle vectors for operon and gene fusions to lacZ: the pJEM series. J Bacteriol. 1994 Nov;176(21):6749–6753. doi: 10.1128/jb.176.21.6749-6753.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Timm J., Perilli M. G., Duez C., Trias J., Orefici G., Fattorini L., Amicosante G., Oratore A., Joris B., Frère J. M. Transcription and expression analysis, using lacZ and phoA gene fusions, of Mycobacterium fortuitum beta-lactamase genes cloned from a natural isolate and a high-level beta-lactamase producer. Mol Microbiol. 1994 May;12(3):491–504. doi: 10.1111/j.1365-2958.1994.tb01037.x. [DOI] [PubMed] [Google Scholar]
  29. Verma A., Kinger A. K., Tyagi J. S. Functional analysis of transcription of the Mycobacterium tuberculosis 16S rDNA-encoding gene. Gene. 1994 Oct 11;148(1):113–118. doi: 10.1016/0378-1119(94)90243-7. [DOI] [PubMed] [Google Scholar]
  30. Westpheling J., Ranes M., Losick R. RNA polymerase heterogeneity in Streptomyces coelicolor. Nature. 1985 Jan 3;313(5997):22–27. doi: 10.1038/313022a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES