Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Aug;178(16):4942–4947. doi: 10.1128/jb.178.16.4942-4947.1996

Fermentative arginine degradation in Halobacterium salinarium (formerly Halobacterium halobium): genes, gene products, and transcripts of the arcRACB gene cluster.

A Ruepp 1, J Soppa 1
PMCID: PMC178278  PMID: 8759859

Abstract

Fermentative growth via the arginine deiminase pathway is mediated by the enzymes arginine deiminase, carbamate kinase, and catabolic ornithine transcarbamylase and by a membrane-bound arginine-ornithine antiporter. Recently we reported the characterization of catabolic ornithine transcarbamylase and the corresponding gene, arcB, from Halobacterium salinarium (formerly Halobacterium halobium). Upstream of the arcB gene, three additional open reading frames with halobacterial codon usage were found. They were identified as the arcC gene coding for carbamate kinase, the arcA gene coding for arginine deiminase, and a gene, tentatively termed arcR, coding for a putative regulatory protein. The identification of the arcC and arcA genes was verified, respectively, by heterologous expression of the enzyme in Haloferax volcanii and by protein isolation and N-terminal sequence determination of three peptides. The gene order arcRACB differs from the gene order arcDABC in Pseudomonas aeruginosa, the only other organism for which sequence information is available. Transcripts from H. salinarium cultures grown fermentatively or aerobically were characterized by Northern (RNA) blot and primer extension analyses. It was determined (i) that monocistronic transcripts corresponding to the four open reading frames exist and that there are three polycistronic transcripts, (ii) that the level of induction during fermentative growth differs for the various transcripts, and (iii) that upstream of the putative transcriptional start sites for the three structural genes there are sequences with similarities to the halobacterial consensus promoter. The data indicate that expression of the arc gene cluster and its regulation differ in H. salinarium and P. aeruginosa.

Full Text

The Full Text of this article is available as a PDF (489.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baur H., Luethi E., Stalon V., Mercenier A., Haas D. Sequence analysis and expression of the arginine-deiminase and carbamate-kinase genes of Pseudomonas aeruginosa. Eur J Biochem. 1989 Jan 15;179(1):53–60. doi: 10.1111/j.1432-1033.1989.tb14520.x. [DOI] [PubMed] [Google Scholar]
  2. Baur H., Stalon V., Falmagne P., Luethi E., Haas D. Primary and quaternary structure of the catabolic ornithine carbamoyltransferase from Pseudomonas aeruginosa. Extensive sequence homology with the anabolic ornithine carbamoyltransferases of Escherichia coli. Eur J Biochem. 1987 Jul 1;166(1):111–117. doi: 10.1111/j.1432-1033.1987.tb13489.x. [DOI] [PubMed] [Google Scholar]
  3. Bolotin A., Biro S. Nucleotide sequence of the putative regulatory gene and major promoter region of the Streptomyces griseus glycerol operon. Gene. 1990 Mar 1;87(1):151–152. doi: 10.1016/0378-1119(90)90508-o. [DOI] [PubMed] [Google Scholar]
  4. Böhm G., Jaenicke R. A structure-based model for the halophilic adaptation of dihydrofolate reductase from Halobacterium volcanii. Protein Eng. 1994 Feb;7(2):213–220. doi: 10.1093/protein/7.2.213. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P. One-hour downward alkaline capillary transfer for blotting of DNA and RNA. Anal Biochem. 1992 Feb 14;201(1):134–139. doi: 10.1016/0003-2697(92)90185-a. [DOI] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Cline S. W., Lam W. L., Charlebois R. L., Schalkwyk L. C., Doolittle W. F. Transformation methods for halophilic archaebacteria. Can J Microbiol. 1989 Jan;35(1):148–152. doi: 10.1139/m89-022. [DOI] [PubMed] [Google Scholar]
  8. Cunin R., Glansdorff N., Piérard A., Stalon V. Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev. 1986 Sep;50(3):314–352. doi: 10.1128/mr.50.3.314-352.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Danner S., Soppa J. Characterization of the distal promoter element of halobacteria in vivo using saturation mutagenesis and selection. Mol Microbiol. 1996 Mar;19(6):1265–1276. doi: 10.1111/j.1365-2958.1996.tb02471.x. [DOI] [PubMed] [Google Scholar]
  10. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Drummond M. H., Contreras A., Mitchenall L. A. The function of isolated domains and chimaeric proteins constructed from the transcriptional activators NifA and NtrC of Klebsiella pneumoniae. Mol Microbiol. 1990 Jan;4(1):29–37. doi: 10.1111/j.1365-2958.1990.tb02012.x. [DOI] [PubMed] [Google Scholar]
  12. Dym O., Mevarech M., Sussman J. L. Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium. Science. 1995 Mar 3;267(5202):1344–1346. doi: 10.1126/science.267.5202.1344. [DOI] [PubMed] [Google Scholar]
  13. Eisenberg H., Mevarech M., Zaccai G. Biochemical, structural, and molecular genetic aspects of halophilism. Adv Protein Chem. 1992;43:1–62. doi: 10.1016/s0065-3233(08)60553-7. [DOI] [PubMed] [Google Scholar]
  14. Eraso J. M., Kaplan S. prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. J Bacteriol. 1994 Jan;176(1):32–43. doi: 10.1128/jb.176.1.32-43.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Galimand M., Gamper M., Zimmermann A., Haas D. Positive FNR-like control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa. J Bacteriol. 1991 Mar;173(5):1598–1606. doi: 10.1128/jb.173.5.1598-1606.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Galinier A., Nègre D., Cortay J. C., Marcandier S., Maloy S. R., Cozzone A. J. Sequence analysis of the iclR gene encoding the repressor of the acetate operon in Salmonella typhimurium. Nucleic Acids Res. 1990 Jun 25;18(12):3656–3656. doi: 10.1093/nar/18.12.3656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gamper M., Ganter B., Polito M. R., Haas D. RNA processing modulates the expression of the arcDABC operon in Pseudomonas aeruginosa. J Mol Biol. 1992 Aug 20;226(4):943–957. doi: 10.1016/0022-2836(92)91044-p. [DOI] [PubMed] [Google Scholar]
  18. Gamper M., Haas D. Processing of the Pseudomonas arcDABC mRNA requires functional RNase E in Escherichia coli. Gene. 1993 Jul 15;129(1):119–122. doi: 10.1016/0378-1119(93)90706-9. [DOI] [PubMed] [Google Scholar]
  19. Gamper M., Zimmermann A., Haas D. Anaerobic regulation of transcription initiation in the arcDABC operon of Pseudomonas aeruginosa. J Bacteriol. 1991 Aug;173(15):4742–4750. doi: 10.1128/jb.173.15.4742-4750.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hain J., Reiter W. D., Hüdepohl U., Zillig W. Elements of an archaeal promoter defined by mutational analysis. Nucleic Acids Res. 1992 Oct 25;20(20):5423–5428. doi: 10.1093/nar/20.20.5423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Harasawa R., Koshimizu K., Kitagawa M., Asada K., Kato I. Nucleotide sequence of the arginine deiminase gene of Mycoplasma hominis. Microbiol Immunol. 1992;36(6):661–665. doi: 10.1111/j.1348-0421.1992.tb02068.x. [DOI] [PubMed] [Google Scholar]
  22. Hartmann R., Sickinger H. D., Oesterhelt D. Anaerobic growth of halobacteria. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3821–3825. doi: 10.1073/pnas.77.7.3821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hindle Z., Smith C. P. Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol Microbiol. 1994 Jun;12(5):737–745. doi: 10.1111/j.1365-2958.1994.tb01061.x. [DOI] [PubMed] [Google Scholar]
  24. Kondo K., Sone H., Yoshida H., Toida T., Kanatani K., Hong Y. M., Nishino N., Tanaka J. Cloning and sequence analysis of the arginine deiminase gene from Mycoplasma arginini. Mol Gen Genet. 1990 Mar;221(1):81–86. doi: 10.1007/BF00280371. [DOI] [PubMed] [Google Scholar]
  25. Lanyi J. K. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev. 1974 Sep;38(3):272–290. doi: 10.1128/br.38.3.272-290.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lüthi E., Baur H., Gamper M., Brunner F., Villeval D., Mercenier A., Haas D. The arc operon for anaerobic arginine catabolism in Pseudomonas aeruginosa contains an additional gene, arcD, encoding a membrane protein. Gene. 1990 Mar 1;87(1):37–43. doi: 10.1016/0378-1119(90)90493-b. [DOI] [PubMed] [Google Scholar]
  27. Ohno T., Ando O., Sugimura K., Taniai M., Suzuki M., Fukuda S., Nagase Y., Yamamoto K., Azuma I. Cloning and nucleotide sequence of the gene encoding arginine deiminase of Mycoplasma arginini. Infect Immun. 1990 Nov;58(11):3788–3795. doi: 10.1128/iai.58.11.3788-3795.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Reiter W. D., Palm P., Zillig W. Analysis of transcription in the archaebacterium Sulfolobus indicates that archaebacterial promoters are homologous to eukaryotic pol II promoters. Nucleic Acids Res. 1988 Jan 11;16(1):1–19. doi: 10.1093/nar/16.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Reverchon S., Nasser W., Robert-Baudouy J. Characterization of kdgR, a gene of Erwinia chrysanthemi that regulates pectin degradation. Mol Microbiol. 1991 Sep;5(9):2203–2216. doi: 10.1111/j.1365-2958.1991.tb02150.x. [DOI] [PubMed] [Google Scholar]
  30. Ruepp A., Müller H. N., Lottspeich F., Soppa J. Catabolic ornithine transcarbamylase of Halobacterium halobium (salinarium): purification, characterization, sequence determination, and evolution. J Bacteriol. 1995 Mar;177(5):1129–1136. doi: 10.1128/jb.177.5.1129-1136.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Smith C. P., Chater K. F. Structure and regulation of controlling sequences for the Streptomyces coelicolor glycerol operon. J Mol Biol. 1988 Dec 5;204(3):569–580. doi: 10.1016/0022-2836(88)90356-7. [DOI] [PubMed] [Google Scholar]
  32. Soppa J., Duschl J., Oesterhelt D. Bacterioopsin, haloopsin, and sensory opsin I of the halobacterial isolate Halobacterium sp. strain SG1: three new members of a growing family. J Bacteriol. 1993 May;175(9):2720–2726. doi: 10.1128/jb.175.9.2720-2726.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sunnarborg A., Klumpp D., Chung T., LaPorte D. C. Regulation of the glyoxylate bypass operon: cloning and characterization of iclR. J Bacteriol. 1990 May;172(5):2642–2649. doi: 10.1128/jb.172.5.2642-2649.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wang C. S., Raper J. R. Protein specificity and sexual morphogenesis in Schizophyllum commune. J Bacteriol. 1969 Jul;99(1):291–297. doi: 10.1128/jb.99.1.291-297.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES