Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Sep;178(17):5071–5079. doi: 10.1128/jb.178.17.5071-5079.1996

Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD.

R M Kappes 1, B Kempf 1, E Bremer 1
PMCID: PMC178300  PMID: 8752321

Abstract

The accumulation of the osmoprotectant glycine betaine from exogenous sources provides a high degree of osmotic tolerance to Bacillus subtilis. We have identified, through functional complementation of an Escherichia coli mutant defective in glycine betaine uptake, a new glycine betaine transport system from B. subtilis. The DNA sequence of a 2,310-bp segment of the cloned region revealed a single gene (opuD) whose product (OpuD) was essential for glycine betaine uptake and osmoprotection in E. coli. The opuD gene encodes a hydrophobic 56.13-kDa protein (512 amino acid residues). OpuD shows a significant degree of sequence identity to the choline transporter BetT and the carnitine transporter CaiT from E. coli and a BetT-like protein from Haemophilus influenzae. These membrane proteins form a family of transporters involved in the uptake of trimethylammonium compounds. The OpuD-mediated glycine betaine transport activity in B. subtilis is controlled by the environmental osmolarity. High osmolarity stimulates de novo synthesis of OpuD and activates preexisting OpuD proteins to achieve maximal glycine betaine uptake activity. An opuD mutant was constructed by marker replacement, and the OpuD-mediated glycine betaine uptake activity was compared with that of the previously identified multicomponent OpuA and OpuC (ProU) glycine betaine uptake systems. In addition, a set of mutants was constructed, each of which synthesized only one of the three glycine betaine uptake systems. These mutants were used to determine the kinetic parameters for glycine betaine transport through OpuA, OpuC, and OpuD. Each of these uptake systems shows high substrate affinity, with Km values in the low micromolar range, which should allow B. subtilis to efficiently acquire the osmoprotectant from the environment. The systems differed in their contribution to the overall glycine betaine accumulation and osmoprotection. A triple opuA, opuC, and opuD mutant strain was isolated, and it showed no glycine betaine uptake activity, demonstrating that three transport systems for this osmoprotectant operate in B. subtilis.

Full Text

The Full Text of this article is available as a PDF (365.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Arakawa T., Timasheff S. N. The stabilization of proteins by osmolytes. Biophys J. 1985 Mar;47(3):411–414. doi: 10.1016/S0006-3495(85)83932-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bender J., Kleckner N. IS10 transposase mutations that specifically alter target site recognition. EMBO J. 1992 Feb;11(2):741–750. doi: 10.1002/j.1460-2075.1992.tb05107.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boch J., Kempf B., Bremer E. Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J Bacteriol. 1994 Sep;176(17):5364–5371. doi: 10.1128/jb.176.17.5364-5371.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boch J., Kempf B., Schmid R., Bremer E. Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genes. J Bacteriol. 1996 Sep;178(17):5121–5129. doi: 10.1128/jb.178.17.5121-5129.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bogosian G., Bilyeu K., O'Neil J. P. Genome rearrangements by residual IS10 elements in strains of Escherichia coli K-12 which had undergone Tn10 mutagenesis and fusaric acid selection. Gene. 1993 Oct 29;133(1):17–22. doi: 10.1016/0378-1119(93)90219-s. [DOI] [PubMed] [Google Scholar]
  7. Csonka L. N., Hanson A. D. Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol. 1991;45:569–606. doi: 10.1146/annurev.mi.45.100191.003033. [DOI] [PubMed] [Google Scholar]
  8. Doige C. A., Ames G. F. ATP-dependent transport systems in bacteria and humans: relevance to cystic fibrosis and multidrug resistance. Annu Rev Microbiol. 1993;47:291–319. doi: 10.1146/annurev.mi.47.100193.001451. [DOI] [PubMed] [Google Scholar]
  9. Eichler K., Bourgis F., Buchet A., Kleber H. P., Mandrand-Berthelot M. A. Molecular characterization of the cai operon necessary for carnitine metabolism in Escherichia coli. Mol Microbiol. 1994 Sep;13(5):775–786. doi: 10.1111/j.1365-2958.1994.tb00470.x. [DOI] [PubMed] [Google Scholar]
  10. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  11. Glaasker E., Konings W. N., Poolman B. Osmotic regulation of intracellular solute pools in Lactobacillus plantarum. J Bacteriol. 1996 Feb;178(3):575–582. doi: 10.1128/jb.178.3.575-582.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldmann A., Boivin C., Fleury V., Message B., Lecoeur L., Maille M., Tepfer D. Betaine use by rhizosphere bacteria: genes essential for trigonelline, stachydrine, and carnitine catabolism in Rhizobium meliloti are located on pSym in the symbiotic region. Mol Plant Microbe Interact. 1991 Nov-Dec;4(6):571–578. doi: 10.1094/mpmi-4-571. [DOI] [PubMed] [Google Scholar]
  13. Gouesbet G., Trautwetter A., Bonnassie S., Wu L. F., Blanco C. Characterization of the Erwinia chrysanthemi osmoprotectant transporter gene ousA. J Bacteriol. 1996 Jan;178(2):447–455. doi: 10.1128/jb.178.2.447-455.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gowrishankar J. Nucleotide sequence of the osmoregulatory proU operon of Escherichia coli. J Bacteriol. 1989 Apr;171(4):1923–1931. doi: 10.1128/jb.171.4.1923-1931.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Graham J. E., Wilkinson B. J. Staphylococcus aureus osmoregulation: roles for choline, glycine betaine, proline, and taurine. J Bacteriol. 1992 Apr;174(8):2711–2716. doi: 10.1128/jb.174.8.2711-2716.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Haardt M., Kempf B., Faatz E., Bremer E. The osmoprotectant proline betaine is a major substrate for the binding-protein-dependent transport system ProU of Escherichia coli K-12. Mol Gen Genet. 1995 Mar 20;246(6):783–786. doi: 10.1007/BF00290728. [DOI] [PubMed] [Google Scholar]
  17. Hecker M., Schumann W., Völker U. Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol. 1996 Feb;19(3):417–428. doi: 10.1046/j.1365-2958.1996.396932.x. [DOI] [PubMed] [Google Scholar]
  18. Higgins C. F. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113. doi: 10.1146/annurev.cb.08.110192.000435. [DOI] [PubMed] [Google Scholar]
  19. Imhoff J. F., Rodriguez-Valera F. Betaine is the main compatible solute of halophilic eubacteria. J Bacteriol. 1984 Oct;160(1):478–479. doi: 10.1128/jb.160.1.478-479.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kempf B., Bremer E. OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis. J Biol Chem. 1995 Jul 14;270(28):16701–16713. doi: 10.1074/jbc.270.28.16701. [DOI] [PubMed] [Google Scholar]
  21. Kunin C. M., Rudy J. Effect of NaCl-induced osmotic stress on intracellular concentrations of glycine betaine and potassium in Escherichia coli, Enterococcus faecalis, and staphylococci. J Lab Clin Med. 1991 Sep;118(3):217–224. [PubMed] [Google Scholar]
  22. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  23. Lamark T., Kaasen I., Eshoo M. W., Falkenberg P., McDougall J., Strøm A. R. DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Mol Microbiol. 1991 May;5(5):1049–1064. doi: 10.1111/j.1365-2958.1991.tb01877.x. [DOI] [PubMed] [Google Scholar]
  24. Lin Y., Hansen J. N. Characterization of a chimeric proU operon in a subtilin-producing mutant of Bacillus subtilis 168. J Bacteriol. 1995 Dec;177(23):6874–6880. doi: 10.1128/jb.177.23.6874-6880.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lucht J. M., Bremer E. Adaptation of Escherichia coli to high osmolarity environments: osmoregulation of the high-affinity glycine betaine transport system proU. FEMS Microbiol Rev. 1994 May;14(1):3–20. doi: 10.1111/j.1574-6976.1994.tb00067.x. [DOI] [PubMed] [Google Scholar]
  26. Platt T. Termination of transcription and its regulation in the tryptophan operon of E. coli. Cell. 1981 Apr;24(1):10–23. doi: 10.1016/0092-8674(81)90496-7. [DOI] [PubMed] [Google Scholar]
  27. Potts M. Desiccation tolerance of prokaryotes. Microbiol Rev. 1994 Dec;58(4):755–805. doi: 10.1128/mr.58.4.755-805.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rose R. E. The nucleotide sequence of pACYC177. Nucleic Acids Res. 1988 Jan 11;16(1):356–356. doi: 10.1093/nar/16.1.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Saier M. H., Jr Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev. 1994 Mar;58(1):71–93. doi: 10.1128/mr.58.1.71-93.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sorokin A., Zumstein E., Azevedo V., Ehrlich S. D., Serror P. The organization of the Bacillus subtilis 168 chromosome region between the spoVA and serA genetic loci, based on sequence data. Mol Microbiol. 1993 Oct;10(2):385–395. doi: 10.1111/j.1365-2958.1993.tb02670.x. [DOI] [PubMed] [Google Scholar]
  32. Sutcliffe I. C., Russell R. R. Lipoproteins of gram-positive bacteria. J Bacteriol. 1995 Mar;177(5):1123–1128. doi: 10.1128/jb.177.5.1123-1128.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Takeshita S., Sato M., Toba M., Masahashi W., Hashimoto-Gotoh T. High-copy-number and low-copy-number plasmid vectors for lacZ alpha-complementation and chloramphenicol- or kanamycin-resistance selection. Gene. 1987;61(1):63–74. doi: 10.1016/0378-1119(87)90365-9. [DOI] [PubMed] [Google Scholar]
  34. Whatmore A. M., Chudek J. A., Reed R. H. The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J Gen Microbiol. 1990 Dec;136(12):2527–2535. doi: 10.1099/00221287-136-12-2527. [DOI] [PubMed] [Google Scholar]
  35. Whatmore A. M., Reed R. H. Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. J Gen Microbiol. 1990 Dec;136(12):2521–2526. doi: 10.1099/00221287-136-12-2521. [DOI] [PubMed] [Google Scholar]
  36. von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol. 1992 May 20;225(2):487–494. doi: 10.1016/0022-2836(92)90934-c. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES