Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Sep;178(17):5100–5104. doi: 10.1128/jb.178.17.5100-5104.1996

Identification of a new inhibitor of essential division gene ftsZ as the kil gene of defective prophage Rac.

A Conter 1, J P Bouché 1, M Dassain 1
PMCID: PMC178304  PMID: 8752325

Abstract

A gene function carried by a plasmid, causing arrest of cell division in Escherichia coli, has been identified as the product of a short open reading frame of the prophage Rac, previously designated orfE, expressed only under conditions of prophage induction. Because Rac carries a killing function expressed under conditions of zygotic induction, an orfE-defective Rac+ strain was constructed. This strain had lost the killing function, indicating that orfE is kil. Division inhibition by kil was specifically relieved by overexpression of essential division gene ftsZ. The kil gene product acts independently of the min operon, and its effects are increased in conditions of high cyclic AMP (cAMP) receptor protein-cAMP complex levels in the cell. Furthermore, at high levels of expression, kil product distorts the rod shape of the cells. These features distinguish kil-encoded protein from the inhibitory product of gene dicB, which occupies a similar genetic location in Kim (Qin), another defective prophage of Escherichia coli.

Full Text

The Full Text of this article is available as a PDF (320.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bi E. F., Lutkenhaus J. FtsZ ring structure associated with division in Escherichia coli. Nature. 1991 Nov 14;354(6349):161–164. doi: 10.1038/354161a0. [DOI] [PubMed] [Google Scholar]
  2. Béjar S., Bouché F., Bouché J. P. Cell division inhibition gene dicB is regulated by a locus similar to lambdoid bacteriophage immunity loci. Mol Gen Genet. 1988 Apr;212(1):11–19. doi: 10.1007/BF00322439. [DOI] [PubMed] [Google Scholar]
  3. Cam K., Béjar S., Gil D., Bouché J. P. Identification and sequence of gene dicB: translation of the division inhibitor from an in-phase internal start. Nucleic Acids Res. 1988 Jul 25;16(14A):6327–6338. doi: 10.1093/nar/16.14.6327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chu C. C., Templin A., Clark A. J. Suppression of a frameshift mutation in the recE gene of Escherichia coli K-12 occurs by gene fusion. J Bacteriol. 1989 Apr;171(4):2101–2109. doi: 10.1128/jb.171.4.2101-2109.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark A. J., Sharma V., Brenowitz S., Chu C. C., Sandler S., Satin L., Templin A., Berger I., Cohen A. Genetic and molecular analyses of the C-terminal region of the recE gene from the Rac prophage of Escherichia coli K-12 reveal the recT gene. J Bacteriol. 1993 Dec;175(23):7673–7682. doi: 10.1128/jb.175.23.7673-7682.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cornet F., Mortier I., Patte J., Louarn J. M. Plasmid pSC101 harbors a recombination site, psi, which is able to resolve plasmid multimers and to substitute for the analogous chromosomal Escherichia coli site dif. J Bacteriol. 1994 Jun;176(11):3188–3195. doi: 10.1128/jb.176.11.3188-3195.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Faubladier M., Bouché J. P. Division inhibition gene dicF of Escherichia coli reveals a widespread group of prophage sequences in bacterial genomes. J Bacteriol. 1994 Feb;176(4):1150–1156. doi: 10.1128/jb.176.4.1150-1156.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Faubladier M., Cam K., Bouché J. P. Escherichia coli cell division inhibitor DicF-RNA of the dicB operon. Evidence for its generation in vivo by transcription termination and by RNase III and RNase E-dependent processing. J Mol Biol. 1990 Apr 5;212(3):461–471. doi: 10.1016/0022-2836(90)90325-G. [DOI] [PubMed] [Google Scholar]
  9. Feinstein S. I., Low K. B. Zygotic induction of the rac locus can cause cell death in E. coli. Mol Gen Genet. 1982;187(2):231–235. doi: 10.1007/BF00331122. [DOI] [PubMed] [Google Scholar]
  10. Greer H. The kil gene of bacteriophage lambda. Virology. 1975 Aug;66(2):589–604. doi: 10.1016/0042-6822(75)90231-7. [DOI] [PubMed] [Google Scholar]
  11. King G., Murray N. E. Restriction alleviation and modification enhancement by the Rac prophage of Escherichia coli K-12. Mol Microbiol. 1995 May;16(4):769–777. doi: 10.1111/j.1365-2958.1995.tb02438.x. [DOI] [PubMed] [Google Scholar]
  12. Low B. Restoration by the rac locus of recombinant forming ability in recB - and recC - merozygotes of Escherichia coli K-12. Mol Gen Genet. 1973 Apr 12;122(2):119–130. doi: 10.1007/BF00435185. [DOI] [PubMed] [Google Scholar]
  13. Mulder E., Woldringh C. L., Tétart F., Bouché J. P. New minC mutations suggest different interactions of the same region of division inhibitor MinC with proteins specific for minD and dicB coinhibition pathways. J Bacteriol. 1992 Jan;174(1):35–39. doi: 10.1128/jb.174.1.35-39.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ranade K., Poteete A. R. Superinfection exclusion (sieB) genes of bacteriophages P22 and lambda. J Bacteriol. 1993 Aug;175(15):4712–4718. doi: 10.1128/jb.175.15.4712-4718.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reisinger G. R., Rietsch A., Lubitz W., Bläsi U. Lambda kil-mediated lysis requires the phage context. Virology. 1993 Apr;193(2):1033–1036. doi: 10.1006/viro.1993.1222. [DOI] [PubMed] [Google Scholar]
  16. Roy A., Haziza C., Danchin A. Regulation of adenylate cyclase synthesis in Escherichia coli: nucleotide sequence of the control region. EMBO J. 1983;2(5):791–797. doi: 10.1002/j.1460-2075.1983.tb01502.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Skurray R. A., Reeves P. Physiology of Escherichia coli K-12 during conjugation: altered recipient cell functions associated with lethal zygosis. J Bacteriol. 1973 Apr;114(1):11–17. doi: 10.1128/jb.114.1.11-17.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tétart F., Bouché J. P. Regulation of the expression of the cell-cycle gene ftsZ by DicF antisense RNA. Division does not require a fixed number of FtsZ molecules. Mol Microbiol. 1992 Mar;6(5):615–620. doi: 10.1111/j.1365-2958.1992.tb01508.x. [DOI] [PubMed] [Google Scholar]
  19. Ward J. E., Jr, Lutkenhaus J. Overproduction of FtsZ induces minicell formation in E. coli. Cell. 1985 Oct;42(3):941–949. doi: 10.1016/0092-8674(85)90290-9. [DOI] [PubMed] [Google Scholar]
  20. de Boer P. A., Crossley R. E., Rothfield L. I. A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell. 1989 Feb 24;56(4):641–649. doi: 10.1016/0092-8674(89)90586-2. [DOI] [PubMed] [Google Scholar]
  21. de Boer P. A., Crossley R. E., Rothfield L. I. Central role for the Escherichia coli minC gene product in two different cell division-inhibition systems. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1129–1133. doi: 10.1073/pnas.87.3.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES