Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Sep;178(17):5105–5111. doi: 10.1128/jb.178.17.5105-5111.1996

Generation of an endogenous DNA-methylating agent by nitrosation in Escherichia coli.

P Taverna 1, B Sedgwick 1
PMCID: PMC178305  PMID: 8752326

Abstract

Escherichia coli ada ogt mutants, which are totally deficient in O6-methylguanine-DNA methyltransferases, have an increased spontaneous mutation rate. This phenotype is particularly evident in starving cells and suggests the generation of an endogenous DNA alkylating agent under this growth condition. We have found that in wild-type cells, the level of the inducible Ada protein is 20-fold higher in stationary-phase and starving cells than in rapidly growing cells, thus enhancing the defense of these cells against DNA damage. The increased level of Ada in stationary cells is dependent on RpoS, a stationary-phase-specific sigma subunit of RNA polymerase. We have also identified a potential source of the mutagenic agent. Nitrosation of amides and related compounds can generate directly acting methylating agents and can be catalyzed by bacteria] enzymes. E. coli moa mutants, which are defective in the synthesis of a molybdopterin cofactor required by several reductases, are deficient in nitrosation activity. It is reported here that a moa mutant shows reduced generation of a mutagenic methylating agent from methylamine (or methylurea) and nitrite added to agar plates. Moreover, a moa mutation eliminates much of the spontaneous mutagenesis in ada ogt mutants. These observations indicate that the major endogenous mutagen is not S-adenosylmethionine but arises by bacterially catalyzed nitrosation.

Full Text

The Full Text of this article is available as a PDF (417.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altuvia S., Almirón M., Huisman G., Kolter R., Storz G. The dps promoter is activated by OxyR during growth and by IHF and sigma S in stationary phase. Mol Microbiol. 1994 Jul;13(2):265–272. doi: 10.1111/j.1365-2958.1994.tb00421.x. [DOI] [PubMed] [Google Scholar]
  2. Aquilina G., Biondo R., Dogliotti E., Meuth M., Bignami M. Expression of the endogenous O6-methylguanine-DNA-methyltransferase protects Chinese hamster ovary cells from spontaneous G:C to A:T transitions. Cancer Res. 1992 Dec 1;52(23):6471–6475. [PubMed] [Google Scholar]
  3. Barrett E. L., Kwan H. S. Bacterial reduction of trimethylamine oxide. Annu Rev Microbiol. 1985;39:131–149. doi: 10.1146/annurev.mi.39.100185.001023. [DOI] [PubMed] [Google Scholar]
  4. Barrows L. R., Magee P. N. Nonenzymatic methylation of DNA by S-adenosylmethionine in vitro. Carcinogenesis. 1982;3(3):349–351. doi: 10.1093/carcin/3.3.349. [DOI] [PubMed] [Google Scholar]
  5. Cairns J., Overbaugh J., Miller S. The origin of mutants. Nature. 1988 Sep 8;335(6186):142–145. doi: 10.1038/335142a0. [DOI] [PubMed] [Google Scholar]
  6. Calmels S., Ohshima H., Bartsch H. Nitrosamine formation by denitrifying and non-denitrifying bacteria: implication of nitrite reductase and nitrate reductase in nitrosation catalysis. J Gen Microbiol. 1988 Jan;134(1):221–226. doi: 10.1099/00221287-134-1-221. [DOI] [PubMed] [Google Scholar]
  7. Calmels S., Ohshima H., Rosenkranz H., McCoy E., Bartsch H. Biochemical studies on the catalysis of nitrosation by bacteria. Carcinogenesis. 1987 Aug;8(8):1085–1088. doi: 10.1093/carcin/8.8.1085. [DOI] [PubMed] [Google Scholar]
  8. Calmels S., Ohshima H., Vincent P., Gounot A. M., Bartsch H. Screening of microorganisms for nitrosation catalysis at pH 7 and kinetic studies on nitrosamine formation from secondary amines by E. coli strains. Carcinogenesis. 1985 Jun;6(6):911–915. doi: 10.1093/carcin/6.6.911. [DOI] [PubMed] [Google Scholar]
  9. Choe M., Reznikoff W. S. Anaerobically expressed Escherichia coli genes identified by operon fusion techniques. J Bacteriol. 1991 Oct;173(19):6139–6146. doi: 10.1128/jb.173.19.6139-6146.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Coloe P. J., Hayward N. J. The importance of prolonged incubation for the synthesis of dimethylnitrosamine by enterobacteria. J Med Microbiol. 1976 May;9(2):211–223. doi: 10.1099/00222615-9-2-211. [DOI] [PubMed] [Google Scholar]
  11. Cupples C. G., Miller J. H. A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5345–5349. doi: 10.1073/pnas.86.14.5345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Demple B., Amábile-Cuevas C. F. Redox redux: the control of oxidative stress responses. Cell. 1991 Nov 29;67(5):837–839. doi: 10.1016/0092-8674(91)90355-3. [DOI] [PubMed] [Google Scholar]
  13. Demple B., Harrison L. Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem. 1994;63:915–948. doi: 10.1146/annurev.bi.63.070194.004411. [DOI] [PubMed] [Google Scholar]
  14. Foster P. L., Cairns J. Mechanisms of directed mutation. Genetics. 1992 Aug;131(4):783–789. doi: 10.1093/genetics/131.4.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Foster P. L. Population dynamics of a Lac- strain of Escherichia coli during selection for lactose utilization. Genetics. 1994 Oct;138(2):253–261. doi: 10.1093/genetics/138.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grafström R. C. In vitro studies of aldehyde effects related to human respiratory carcinogenesis. Mutat Res. 1990 May;238(3):175–184. doi: 10.1016/0165-1110(90)90009-z. [DOI] [PubMed] [Google Scholar]
  17. Iobbi-Nivol C., Santini C. L., Blasco F., Giordano G. Purification and further characterization of the second nitrate reductase of Escherichia coli K12. Eur J Biochem. 1990 Mar 30;188(3):679–687. doi: 10.1111/j.1432-1033.1990.tb15450.x. [DOI] [PubMed] [Google Scholar]
  18. Kodama M., Saitô H. Formation of methylurea from methylamine and carbamyl phosphate: a possible environmental hazard. Cancer Lett. 1980 Oct;10(4):319–324. doi: 10.1016/0304-3835(80)90048-8. [DOI] [PubMed] [Google Scholar]
  19. Kolter R., Siegele D. A., Tormo A. The stationary phase of the bacterial life cycle. Annu Rev Microbiol. 1993;47:855–874. doi: 10.1146/annurev.mi.47.100193.004231. [DOI] [PubMed] [Google Scholar]
  20. Kunisaki N., Hayashi M. Formation of N-nitrosamines from seconday animes and nitrite by resting cells of Escherichia coli B. Appl Environ Microbiol. 1979 Feb;37(2):279–282. doi: 10.1128/aem.37.2.279-282.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Landini P., Hajec L. I., Volkert M. R. Structure and transcriptional regulation of the Escherichia coli adaptive response gene aidB. J Bacteriol. 1994 Nov;176(21):6583–6589. doi: 10.1128/jb.176.21.6583-6589.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lijinsky W., Keefer L., Conrad E., Van de Bogart R. Nitrosation of tertiary amines and some biologic implications. J Natl Cancer Inst. 1972 Nov;49(5):1239–1249. [PubMed] [Google Scholar]
  23. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993 Apr 22;362(6422):709–715. doi: 10.1038/362709a0. [DOI] [PubMed] [Google Scholar]
  24. Lindahl T., Sedgwick B., Sekiguchi M., Nakabeppu Y. Regulation and expression of the adaptive response to alkylating agents. Annu Rev Biochem. 1988;57:133–157. doi: 10.1146/annurev.bi.57.070188.001025. [DOI] [PubMed] [Google Scholar]
  25. Loewen P. C., Hengge-Aronis R. The role of the sigma factor sigma S (KatF) in bacterial global regulation. Annu Rev Microbiol. 1994;48:53–80. doi: 10.1146/annurev.mi.48.100194.000413. [DOI] [PubMed] [Google Scholar]
  26. Lutz W. K. Endogenous genotoxic agents and processes as a basis of spontaneous carcinogenesis. Mutat Res. 1990 May;238(3):287–295. doi: 10.1016/0165-1110(90)90020-c. [DOI] [PubMed] [Google Scholar]
  27. Mackay W. J., Han S., Samson L. D. DNA alkylation repair limits spontaneous base substitution mutations in Escherichia coli. J Bacteriol. 1994 Jun;176(11):3224–3230. doi: 10.1128/jb.176.11.3224-3230.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Meier I., Shephard S. E., Lutz W. K. Nitrosation of aspartic acid, aspartame, and glycine ethylester. Alkylation of 4-(p-nitrobenzyl)pyridine (NBP) in vitro and binding to DNA in the rat. Mutat Res. 1990 May;238(3):193–201. doi: 10.1016/0165-1110(90)90011-y. [DOI] [PubMed] [Google Scholar]
  29. Ohshima H., Bartsch H. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res. 1994 Mar 1;305(2):253–264. doi: 10.1016/0027-5107(94)90245-3. [DOI] [PubMed] [Google Scholar]
  30. Potter P. M., Kleibl K., Cawkwell L., Margison G. P. Expression of the ogt gene in wild-type and ada mutants of E. coli. Nucleic Acids Res. 1989 Oct 25;17(20):8047–8060. doi: 10.1093/nar/17.20.8047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ralt D., Wishnok J. S., Fitts R., Tannenbaum S. R. Bacterial catalysis of nitrosation: involvement of the nar operon of Escherichia coli. J Bacteriol. 1988 Jan;170(1):359–364. doi: 10.1128/jb.170.1.359-364.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rebeck G. W., Samson L. Increased spontaneous mutation and alkylation sensitivity of Escherichia coli strains lacking the ogt O6-methylguanine DNA repair methyltransferase. J Bacteriol. 1991 Mar;173(6):2068–2076. doi: 10.1128/jb.173.6.2068-2076.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rebeck G. W., Smith C. M., Goad D. L., Samson L. Characterization of the major DNA repair methyltransferase activity in unadapted Escherichia coli and identification of a similar activity in Salmonella typhimurium. J Bacteriol. 1989 Sep;171(9):4563–4568. doi: 10.1128/jb.171.9.4563-4568.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rydberg B., Lindahl T. Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction. EMBO J. 1982;1(2):211–216. doi: 10.1002/j.1460-2075.1982.tb01149.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sak B. D., Eisenstark A., Touati D. Exonuclease III and the catalase hydroperoxidase II in Escherichia coli are both regulated by the katF gene product. Proc Natl Acad Sci U S A. 1989 May;86(9):3271–3275. doi: 10.1073/pnas.86.9.3271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sedgwick B. Oxidation of methylhydrazines to mutagenic methylating derivatives and inducers of the adaptive response of Escherichia coli to alkylation damage. Cancer Res. 1992 Jul 1;52(13):3693–3697. [PubMed] [Google Scholar]
  37. Sedgwick B., Robins P. Isolation of mutants of Escherichia coli with increased resistance to alkylating agents: mutants deficient in thiols and mutants constitutive for the adaptive response. Mol Gen Genet. 1980;180(1):85–90. doi: 10.1007/BF00267355. [DOI] [PubMed] [Google Scholar]
  38. Sedgwick B., Vaughan P. Widespread adaptive response against environmental methylating agents in microorganisms. Mutat Res. 1991 Sep-Oct;250(1-2):211–221. doi: 10.1016/0027-5107(91)90178-q. [DOI] [PubMed] [Google Scholar]
  39. Shephard S. E., Schlatter C., Lutz W. K. Assessment of the risk of formation of carcinogenic N-nitroso compounds from dietary precursors in the stomach. Food Chem Toxicol. 1987 Jan;25(1):91–108. doi: 10.1016/0278-6915(87)90311-5. [DOI] [PubMed] [Google Scholar]
  40. Stewart V., MacGregor C. H. Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci. J Bacteriol. 1982 Aug;151(2):788–799. doi: 10.1128/jb.151.2.788-799.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Stewart V. Nitrate regulation of anaerobic respiratory gene expression in Escherichia coli. Mol Microbiol. 1993 Aug;9(3):425–434. doi: 10.1111/j.1365-2958.1993.tb01704.x. [DOI] [PubMed] [Google Scholar]
  42. Stewart V. Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol Rev. 1988 Jun;52(2):190–232. doi: 10.1128/mr.52.2.190-232.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Teo I., Sedgwick B., Kilpatrick M. W., McCarthy T. V., Lindahl T. The intracellular signal for induction of resistance to alkylating agents in E. coli. Cell. 1986 Apr 25;45(2):315–324. doi: 10.1016/0092-8674(86)90396-x. [DOI] [PubMed] [Google Scholar]
  44. Tsimis J., Yarosh D. B. Adaptive response induction by bacterial catalysis of nitrosation. Environ Mol Mutagen. 1990;15(2):69–70. doi: 10.1002/em.2850150202. [DOI] [PubMed] [Google Scholar]
  45. Vaughan P., Sedgwick B. A weak adaptive response to alkylation damage in Salmonella typhimurium. J Bacteriol. 1991 Jun;173(12):3656–3662. doi: 10.1128/jb.173.12.3656-3662.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vaughan P., Sedgwick B., Hall J., Gannon J., Lindahl T. Environmental mutagens that induce the adaptive response to alkylating agents in Escherichia coli. Carcinogenesis. 1991 Feb;12(2):263–268. doi: 10.1093/carcin/12.2.263. [DOI] [PubMed] [Google Scholar]
  47. Volkert M. R., Hajec L. I., Matijasevic Z., Fang F. C., Prince R. Induction of the Escherichia coli aidB gene under oxygen-limiting conditions requires a functional rpoS (katF) gene. J Bacteriol. 1994 Dec;176(24):7638–7645. doi: 10.1128/jb.176.24.7638-7645.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Volkert M. R., Nguyen D. C. Induction of specific Escherichia coli genes by sublethal treatments with alkylating agents. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4110–4114. doi: 10.1073/pnas.81.13.4110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Xiao W., Samson L. In vivo evidence for endogenous DNA alkylation damage as a source of spontaneous mutation in eukaryotic cells. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2117–2121. doi: 10.1073/pnas.90.6.2117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yamada M., Sedgwick B., Sofuni T., Nohmi T. Construction and characterization of mutants of Salmonella typhimurium deficient in DNA repair of O6-methylguanine. J Bacteriol. 1995 Mar;177(6):1511–1519. doi: 10.1128/jb.177.6.1511-1519.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES