Abstract
The microaerophilic nitrogen-fixing bacterium Azospirillum brasilense formed a sharply defined band in a spatial gradient of oxygen. As a result of aerotaxis, the bacteria were attracted to a specific low concentration of oxygen (3 to 5 microM). Bacteria swimming away from the aerotactic band were repelled by the higher or lower concentration of oxygen that they encountered and returned to the band. This behavior was confirmed by using temporal gradients of oxygen. The cellular energy level in A. brasilense, monitored by measuring the proton motive force, was maximal at 3 to 5 microM oxygen. The proton motive force was lower at oxygen concentrations that were higher or lower than the preferred oxygen concentration. Bacteria swimming toward the aerotactic band would experience an increase in the proton motive force, and bacteria swimming away from the band would experience a decrease in the proton motive force. It is proposed that the change in the proton motive force is the signal that regulates positive and negative aerotaxis. The preferred oxygen concentration for aerotaxis was similar to the preferred oxygen concentration for nitrogen fixation. Aerotaxis is an important adaptive behavioral response that can guide these free-living diazotrophs to the optimal niche for nitrogen fixation in the rhizosphere.
Full Text
The Full Text of this article is available as a PDF (525.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler J. Chemotaxis in bacteria. Science. 1966 Aug 12;153(3737):708–716. doi: 10.1126/science.153.3737.708. [DOI] [PubMed] [Google Scholar]
- Armstrong J. B., Adler J. Complementation of nonchemotactic mutants of Escherichia coli. Genetics. 1969 Jan;61(1):61–66. doi: 10.1093/genetics/61.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barak R., Nur I., Okon Y., Henis Y. Aerotactic response of Azospirillum brasilense. J Bacteriol. 1982 Nov;152(2):643–649. doi: 10.1128/jb.152.2.643-649.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berg H. C., Brown D. A. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature. 1972 Oct 27;239(5374):500–504. doi: 10.1038/239500a0. [DOI] [PubMed] [Google Scholar]
- Eisenbach M. Changes in membrane potential of Escherichia coli in response to temporal gradients of chemicals. Biochemistry. 1982 Dec 21;21(26):6818–6825. doi: 10.1021/bi00269a030. [DOI] [PubMed] [Google Scholar]
- Glagolev A. N., Skulachev V. P. The proton pump is a molecular engine of motile bacteria. Nature. 1978 Mar 16;272(5650):280–282. doi: 10.1038/272280a0. [DOI] [PubMed] [Google Scholar]
- Greenberg E. P., Canale-Parola E. Chemotaxis in Spirochaeta aurantia. J Bacteriol. 1977 Apr;130(1):485–494. doi: 10.1128/jb.130.1.485-494.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurek T., Reinhold-Hurek B., Turner G. L., Bergersen F. J. Augmented rates of respiration and efficient nitrogen fixation at nanomolar concentrations of dissolved O2 in hyperinduced Azoarcus sp. strain BH72. J Bacteriol. 1994 Aug;176(15):4726–4733. doi: 10.1128/jb.176.15.4726-4733.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamo N., Muratsugu M., Hongoh R., Kobatake Y. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol. 1979 Aug;49(2):105–121. doi: 10.1007/BF01868720. [DOI] [PubMed] [Google Scholar]
- Kashket E. R. The proton motive force in bacteria: a critical assessment of methods. Annu Rev Microbiol. 1985;39:219–242. doi: 10.1146/annurev.mi.39.100185.001251. [DOI] [PubMed] [Google Scholar]
- Larsen S. H., Adler J., Gargus J. J., Hogg R. W. Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1239–1243. doi: 10.1073/pnas.71.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laszlo D. J., Fandrich B. L., Sivaram A., Chance B., Taylor B. L. Cytochrome o as a terminal oxidase and receptor for aerotaxis in Salmonella typhimurium. J Bacteriol. 1984 Aug;159(2):663–667. doi: 10.1128/jb.159.2.663-667.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laszlo D. J., Niwano M., Goral W. W., Taylor B. L. Bacillus cereus electron transport and proton motive force during aerotaxis. J Bacteriol. 1984 Sep;159(3):820–824. doi: 10.1128/jb.159.3.820-824.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laszlo D. J., Taylor B. L. Aerotaxis in Salmonella typhimurium: role of electron transport. J Bacteriol. 1981 Feb;145(2):990–1001. doi: 10.1128/jb.145.2.990-1001.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindbeck J. C., Goulbourne E. A., Jr, Johnson M. S., Taylor B. L. Aerotaxis in Halobacterium salinarium is methylation-dependent. Microbiology. 1995 Nov;141(Pt 11):2945–2953. doi: 10.1099/13500872-141-11-2945. [DOI] [PubMed] [Google Scholar]
- Macnab R. M., Koshland D. E., Jr The gradient-sensing mechanism in bacterial chemotaxis. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2509–2512. doi: 10.1073/pnas.69.9.2509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manson M. D., Tedesco P., Berg H. C., Harold F. M., Van der Drift C. A protonmotive force drives bacterial flagella. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3060–3064. doi: 10.1073/pnas.74.7.3060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okon Y., Houchins J. P., Albrecht S. L., Burris R. H. Growth of Spirillum lipoferum at constant partial pressures of oxygen, and the properties of its nitrogenase in cell-free extracts. J Gen Microbiol. 1977 Jan;98(1):87–93. doi: 10.1099/00221287-98-1-87. [DOI] [PubMed] [Google Scholar]
- Shioi J., Dang C. V., Taylor B. L. Oxygen as attractant and repellent in bacterial chemotaxis. J Bacteriol. 1987 Jul;169(7):3118–3123. doi: 10.1128/jb.169.7.3118-3123.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shioi J., Taylor B. L. Oxygen taxis and proton motive force in Salmonella typhimurium. J Biol Chem. 1984 Sep 10;259(17):10983–10988. [PubMed] [Google Scholar]
- Shioi J., Tribhuwan R. C., Berg S. T., Taylor B. L. Signal transduction in chemotaxis to oxygen in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1988 Dec;170(12):5507–5511. doi: 10.1128/jb.170.12.5507-5511.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stock J. B., Rauch B., Roseman S. Periplasmic space in Salmonella typhimurium and Escherichia coli. J Biol Chem. 1977 Nov 10;252(21):7850–7861. [PubMed] [Google Scholar]
- Szmelcman S., Adler J. Change in membrane potential during bacterial chemotaxis. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4387–4391. doi: 10.1073/pnas.73.12.4387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor B. L. Role of proton motive force in sensory transduction in bacteria. Annu Rev Microbiol. 1983;37:551–573. doi: 10.1146/annurev.mi.37.100183.003003. [DOI] [PubMed] [Google Scholar]
- Wong L. S., Johnson M. S., Zhulin I. B., Taylor B. L. Role of methylation in aerotaxis in Bacillus subtilis. J Bacteriol. 1995 Jul;177(14):3985–3991. doi: 10.1128/jb.177.14.3985-3991.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhulin I. B., Armitage J. P. Motility, chemokinesis, and methylation-independent chemotaxis in Azospirillum brasilense. J Bacteriol. 1993 Feb;175(4):952–958. doi: 10.1128/jb.175.4.952-958.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhulin I. B., Lois A. F., Taylor B. L. Behavior of Rhizobium meliloti in oxygen gradients. FEBS Lett. 1995 Jun 26;367(2):180–182. doi: 10.1016/0014-5793(95)00561-m. [DOI] [PubMed] [Google Scholar]