Abstract
Klebsiella species express a family of structurally related lipopolysaccharide O antigens which share a common backbone known as D-galactan I. Serotype specificity results from modification of D-galactan I by addition of domains of altered structure or by substitution with O-acetyl and/or alpha-D-Galp side groups with various linkages and stoichiometries. In the prototype, Klebsiella serotype O1, the his-linked rfb gene cluster is required for synthesis of D-galactan I, but genes conferring serotype specificity are unlinked. The D-galactan I part of the O polysaccharide is O acetylated in Klebsiella serotype O8. By cloning the rfb region from Klebsiella serotype O8 and analyzing the O polysaccharide synthesized in Escherichia coli K-12 hosts, we show that, like rfbO1, the rfbO8 region directs formation of unmodified D-galactan I. The rfbAB genes encode an ATP-binding cassette transporter required for export of polymeric D-galactan I across the plasma membrane prior to completion of the lipopolysaccharide molecule by ligation of the O polysaccharide to lipid A-core. Complementation experiments show that the rfbAB gene products in serotypes O1 and O8 are functionally equivalent and interchangeable. Hybridization experiments and physical mapping of the rfb regions in related Klebsiella serotypes suggest the existence of shared rfb genes with a common organization. However, despite the functional equivalence of these rfb gene clusters, at least three distinct clonal groups were detected in different Klebsiella species and subspecies, on the basis of Southern hybridization experiments carried out under high-stringency conditions. The clonal groups cannot be predicted by features of the O-antigen structure. To examine the relationships in more detail, the complete nucleotide sequence of the serotype O8 rfb cluster was determined and compared with that of the serotype O1 prototype. The nucleotide sequences for the six rfb genes showed variations in moles percent G+C values and in the values for nucleotide sequence identity, which ranged from 66.9 to 79.7%. The predicted polypeptides ranged from 64.3% identity (78.4% total similarity) to 94.3% identity (98.0% similarity). The results presented here are not consistent with dissemination of the Klebsiella D-galactan I rfb genes through recent lateral transfer events.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arakawa Y., Wacharotayankun R., Nagatsuka T., Ito H., Kato N., Ohta M. Genomic organization of the Klebsiella pneumoniae cps region responsible for serotype K2 capsular polysaccharide synthesis in the virulent strain Chedid. J Bacteriol. 1995 Apr;177(7):1788–1796. doi: 10.1128/jb.177.7.1788-1796.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aucken H. M., Oxley D., Wilkinson S. G. Structural and serological characterisation of an O-specific polysaccharide from Serratia plymuthica. FEMS Microbiol Lett. 1993 Aug 1;111(2-3):295–300. doi: 10.1111/j.1574-6968.1993.tb06401.x. [DOI] [PubMed] [Google Scholar]
- Bastin D. A., Romana L. K., Reeves P. R. Molecular cloning and expression in Escherichia coli K-12 of the rfb gene cluster determining the O antigen of an E. coli O111 strain. Mol Microbiol. 1991 Sep;5(9):2223–2231. doi: 10.1111/j.1365-2958.1991.tb02152.x. [DOI] [PubMed] [Google Scholar]
- Binotto J., MacLachlan P. R., Sanderson K. E. Electrotransformation in Salmonella typhimurium LT2. Can J Microbiol. 1991 Jun;37(6):474–477. doi: 10.1139/m91-078. [DOI] [PubMed] [Google Scholar]
- Boulnois G. J., Roberts I. S. Genetics of capsular polysaccharide production in bacteria. Curr Top Microbiol Immunol. 1990;150:1–18. doi: 10.1007/978-3-642-74694-9_1. [DOI] [PubMed] [Google Scholar]
- Bronner D., Clarke B. R., Whitfield C. Identification of an ATP-binding cassette transport system required for translocation of lipopolysaccharide O-antigen side-chains across the cytoplasmic membrane of Klebsiella pneumoniae serotype O1. Mol Microbiol. 1994 Nov;14(3):505–519. doi: 10.1111/j.1365-2958.1994.tb02185.x. [DOI] [PubMed] [Google Scholar]
- Clarke B. R., Bronner D., Keenleyside W. J., Severn W. B., Richards J. C., Whitfield C. Role of Rfe and RfbF in the initiation of biosynthesis of D-galactan I, the lipopolysaccharide O antigen from Klebsiella pneumoniae serotype O1. J Bacteriol. 1995 Oct;177(19):5411–5418. doi: 10.1128/jb.177.19.5411-5418.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke B. R., Whitfield C. Molecular cloning of the rfb region of Klebsiella pneumoniae serotype O1:K20: the rfb gene cluster is responsible for synthesis of the D-galactan I O polysaccharide. J Bacteriol. 1992 Jul;174(14):4614–4621. doi: 10.1128/jb.174.14.4614-4621.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darveau R. P., Hancock R. E. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol. 1983 Aug;155(2):831–838. doi: 10.1128/jb.155.2.831-838.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doige C. A., Ames G. F. ATP-dependent transport systems in bacteria and humans: relevance to cystic fibrosis and multidrug resistance. Annu Rev Microbiol. 1993;47:291–319. doi: 10.1146/annurev.mi.47.100193.001451. [DOI] [PubMed] [Google Scholar]
- Galili U., Mandrell R. E., Hamadeh R. M., Shohet S. B., Griffiss J. M. Interaction between human natural anti-alpha-galactosyl immunoglobulin G and bacteria of the human flora. Infect Immun. 1988 Jul;56(7):1730–1737. doi: 10.1128/iai.56.7.1730-1737.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamadeh R. M., Jarvis G. A., Galili U., Mandrell R. E., Zhou P., Griffiss J. M. Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces. J Clin Invest. 1992 Apr;89(4):1223–1235. doi: 10.1172/JCI115706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heuzenroeder M. W., Beger D. W., Thomas C. J., Manning P. A. Molecular cloning and expression in Escherichia coli K-12 of the O101 rfb region from E. coli B41 (O101:K99/F41) and the genetic relationship to other O101 rfb loci. Mol Microbiol. 1989 Mar;3(3):295–302. doi: 10.1111/j.1365-2958.1989.tb00174.x. [DOI] [PubMed] [Google Scholar]
- Hitchcock P. J., Brown T. M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol. 1983 Apr;154(1):269–277. doi: 10.1128/jb.154.1.269-277.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hull R. A., Gill R. E., Hsu P., Minshew B. H., Falkow S. Construction and expression of recombinant plasmids encoding type 1 or D-mannose-resistant pili from a urinary tract infection Escherichia coli isolate. Infect Immun. 1981 Sep;33(3):933–938. doi: 10.1128/iai.33.3.933-938.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly R. F., Severn W. B., Richards J. C., Perry M. B., MacLean L. L., Tomás J. M., Merino S., Whitfield C. Structural variation in the O-specific polysaccharides of Klebsiella pneumoniae serotype O1 and O8 lipopolysaccharide: evidence for clonal diversity in rfb genes. Mol Microbiol. 1993 Nov;10(3):615–625. doi: 10.1111/j.1365-2958.1993.tb00933.x. [DOI] [PubMed] [Google Scholar]
- Kessler A. C., Haase A., Reeves P. R. Molecular analysis of the 3,6-dideoxyhexose pathway genes of Yersinia pseudotuberculosis serogroup IIA. J Bacteriol. 1993 Mar;175(5):1412–1422. doi: 10.1128/jb.175.5.1412-1422.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kol O., Wieruszeski J. M., Strecker G., Fournet B., Zalisz R., Smets P. Structure of the O-specific polysaccharide chain of Klebsiella pneumoniae O1K2 (NCTC 5055) lipopolysaccharide. A complementary elucidation. Carbohydr Res. 1992 Dec 15;236:339–344. doi: 10.1016/0008-6215(92)85028-x. [DOI] [PubMed] [Google Scholar]
- Kol O., Wieruszeski J. M., Strecker G., Montreuil J., Fournet B., Zalisz R., Smets P. Structure of the O-specific polysaccharide chain from Klebsiella pneumoniae O1K2 (NCTC 5055) lipopolysaccharide. Carbohydr Res. 1991 Sep 18;217:117–125. doi: 10.1016/0008-6215(91)84122-u. [DOI] [PubMed] [Google Scholar]
- Liu D., Reeves P. R. Presence of different O antigen forms in three isolates of one clone of Escherichia coli. Genetics. 1994 Sep;138(1):6–10. [PMC free article] [PubMed] [Google Scholar]
- MacLean L. L., Whitfield C., Perry M. B. Characterization of the polysaccharide antigen of Klebsiella pneumoniae O:9 lipopolysaccharide. Carbohydr Res. 1993 Feb 1;239:325–328. doi: 10.1016/0008-6215(93)84231-t. [DOI] [PubMed] [Google Scholar]
- McCallum K. L., Schoenhals G., Laakso D., Clarke B., Whitfield C. A high-molecular-weight fraction of smooth lipopolysaccharide in Klebsiella serotype O1:K20 contains a unique O-antigen epitope and determines resistance to nonspecific serum killing. Infect Immun. 1989 Dec;57(12):3816–3822. doi: 10.1128/iai.57.12.3816-3822.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montgomerie J. Z. Epidemiology of Klebsiella and hospital-associated infections. Rev Infect Dis. 1979 Sep-Oct;1(5):736–753. doi: 10.1093/clinids/1.5.736. [DOI] [PubMed] [Google Scholar]
- Nassau P. M., Martin S. L., Brown R. E., Weston A., Monsey D., McNeil M. R., Duncan K. Galactofuranose biosynthesis in Escherichia coli K-12: identification and cloning of UDP-galactopyranose mutase. J Bacteriol. 1996 Feb;178(4):1047–1052. doi: 10.1128/jb.178.4.1047-1052.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson K., Selander R. K. Intergeneric transfer and recombination of the 6-phosphogluconate dehydrogenase gene (gnd) in enteric bacteria. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10227–10231. doi: 10.1073/pnas.91.21.10227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neuhard J., Thomassen E. Altered deoxyribonucleotide pools in P2 eductants of Escherichia coli K-12 due to deletion of the dcd gene. J Bacteriol. 1976 May;126(2):999–1001. doi: 10.1128/jb.126.2.999-1001.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oxley D., Wilkinson S. G. Structure of the O-specific galactan from the lipopolysaccharide of the reference strain for Serratia marcescens serogroup O24. Carbohydr Res. 1989 Dec 21;195(1):117–122. doi: 10.1016/0008-6215(89)85094-3. [DOI] [PubMed] [Google Scholar]
- Oxley D., Wilkinson S. G. Structures of neutral glycans isolated from the lipopolysaccharides of reference strains for Serratia marcescens serogroups O16 and O20. Carbohydr Res. 1989 Oct 31;193:241–248. doi: 10.1016/0008-6215(89)85122-5. [DOI] [PubMed] [Google Scholar]
- Reeves P. Evolution of Salmonella O antigen variation by interspecific gene transfer on a large scale. Trends Genet. 1993 Jan;9(1):17–22. doi: 10.1016/0168-9525(93)90067-R. [DOI] [PubMed] [Google Scholar]
- Reizer J., Reizer A., Saier M. H., Jr A new subfamily of bacterial ABC-type transport systems catalyzing export of drugs and carbohydrates. Protein Sci. 1992 Oct;1(10):1326–1332. doi: 10.1002/pro.5560011012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richards J. C., Leitch R. A. Elucidation of the structure of the Pasteurella haemolytica serotype T10 lipopolysaccharide O-antigen by n.m.r. spectroscopy. Carbohydr Res. 1989 Mar 15;186(2):275–286. doi: 10.1016/0008-6215(89)84041-8. [DOI] [PubMed] [Google Scholar]
- Sueoka N. Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2653–2657. doi: 10.1073/pnas.85.8.2653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szabo M., Bronner D., Whitfield C. Relationships between rfb gene clusters required for biosynthesis of identical D-galactose-containing O antigens in Klebsiella pneumoniae serotype O1 and Serratia marcescens serotype O16. J Bacteriol. 1995 Mar;177(6):1544–1553. doi: 10.1128/jb.177.6.1544-1553.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
- Valvano M. A., Marolda C. L. Relatedness of O-specific lipopolysaccharide side chain genes from strains of Shigella boydii type 12 belonging to two clonal groups and from Escherichia coli O7:K1. Infect Immun. 1991 Nov;59(11):3917–3923. doi: 10.1128/iai.59.11.3917-3923.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verma N. K., Quigley N. B., Reeves P. R. O-antigen variation in Salmonella spp.: rfb gene clusters of three strains. J Bacteriol. 1988 Jan;170(1):103–107. doi: 10.1128/jb.170.1.103-107.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitfield C. Biosynthesis of lipopolysaccharide O antigens. Trends Microbiol. 1995 May;3(5):178–185. doi: 10.1016/s0966-842x(00)88917-9. [DOI] [PubMed] [Google Scholar]
- Whitfield C., Perry M. B., MacLean L. L., Yu S. H. Structural analysis of the O-antigen side chain polysaccharides in the lipopolysaccharides of Klebsiella serotypes O2(2a), O2(2a,2b), and O2(2a,2c). J Bacteriol. 1992 Aug;174(15):4913–4919. doi: 10.1128/jb.174.15.4913-4919.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitfield C., Richards J. C., Perry M. B., Clarke B. R., MacLean L. L. Expression of two structurally distinct D-galactan O antigens in the lipopolysaccharide of Klebsiella pneumoniae serotype O1. J Bacteriol. 1991 Feb;173(4):1420–1431. doi: 10.1128/jb.173.4.1420-1431.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitfield C., Valvano M. A. Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria. Adv Microb Physiol. 1993;35:135–246. doi: 10.1016/s0065-2911(08)60099-5. [DOI] [PubMed] [Google Scholar]
- Xiang S. H., Haase A. M., Reeves P. R. Variation of the rfb gene clusters in Salmonella enterica. J Bacteriol. 1993 Aug;175(15):4877–4884. doi: 10.1128/jb.175.15.4877-4884.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ØRSKOV I. O antigens in the Klebsiella group. Acta Pathol Microbiol Scand. 1954;34(2):145–156. doi: 10.1111/j.1699-0463.1954.tb00811.x. [DOI] [PubMed] [Google Scholar]