Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Sep;178(17):5272–5278. doi: 10.1128/jb.178.17.5272-5278.1996

Evidence that the PBP 5 synthesis repressor (psr) of Enterococcus hirae is also involved in the regulation of cell wall composition and other cell wall-related properties.

O Massidda 1, R Kariyama 1, L Daneo-Moore 1, G D Shockman 1
PMCID: PMC178327  PMID: 8752348

Abstract

psr has been reported by M. Ligozzi, F. Pittaluga, and R. Fontana, (J. Bacteriol. 175:2046-2051, 1993) to be a genetic element located just upstream of the structural gene for the low-affinity penicillin-binding protein 5 (PBP 5) in the chromosome of Enterococcus hirae ATCC 9790 and to be involved in the repression of PBP 5 synthesis. By comparing properties of strains of E. hirae that contain a full-length, functional psr with those of strains that possess a truncated form of the gene, we have obtained data that indicate that psr is involved in the regulation of several additional surface-related properties. We observed that cells of strains that possessed a truncated psr were more sensitive to lysozyme-catalyzed protoplast formation, autolyzed more rapidly in 10 mM sodium phosphate (pH 6.8), and, in contrast to strains that possess a functional psr, retained these characteristics after the cultures entered the stationary growth phase. Cellular lytic properties did not correlate with differences in the cellular contents of muramidase-1 or muramidase-2, with the levels of PBP 5 produced, or with the penicillin susceptibilities of the strains. However, a strong correlation was observed with the amounts of rhamnose present in the cell walls of the various strains. All of the strains examined that possessed a truncated form of psr also possessed approximately one-half of the rhamnose content present in the walls of strains that possessed a functional psr. These data suggest that psr is also involved in the regulation of the synthesis of, or covalent linkage to the cell wall peptidoglycan of, a rhamnose-rich polysaccharide. These differences in cell wall composition could be responsible for the observed phenotypic differences. However, the multiple effects of psr suggest that it is part of a global regulatory system that, perhaps independently, affects several cell surface-related properties.

Full Text

The Full Text of this article is available as a PDF (319.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Canepari P., Lleò M. M., Cornaglia G., Fontana R., Satta G. In Streptococcus faecium penicillin-binding protein 5 alone is sufficient for growth at sub-maximal but not at maximal rate. J Gen Microbiol. 1986 Mar;132(3):625–631. doi: 10.1099/00221287-132-3-625. [DOI] [PubMed] [Google Scholar]
  2. Chu C. P., Kariyama R., Daneo-Moore L., Shockman G. D. Cloning and sequence analysis of the muramidase-2 gene from Enterococcus hirae. J Bacteriol. 1992 Mar;174(5):1619–1625. doi: 10.1128/jb.174.5.1619-1625.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cornett J. B., Redman B. E., Shockman G. D. Autolytic defective mutant of Streptococcus faecalis. J Bacteriol. 1978 Feb;133(2):631–640. doi: 10.1128/jb.133.2.631-640.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coyette J., Ghuysen J. M., Fontana R. The penicillin-binding proteins in Streptococcus faecalis ATCC 9790. Eur J Biochem. 1980 Sep;110(2):445–456. doi: 10.1111/j.1432-1033.1980.tb04886.x. [DOI] [PubMed] [Google Scholar]
  5. Ellwood D. C., Tempest D. W. Control of teichoic acid and teichuronic acid biosyntheses in chemostat cultures of Bacillus subtilis var. niger. Biochem J. 1969 Jan;111(1):1–5. doi: 10.1042/bj1110001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fontana R., Cerini R., Longoni P., Grossato A., Canepari P. Identification of a streptococcal penicillin-binding protein that reacts very slowly with penicillin. J Bacteriol. 1983 Sep;155(3):1343–1350. doi: 10.1128/jb.155.3.1343-1350.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fontana R., Grossato A., Rossi L., Cheng Y. R., Satta G. Transition from resistance to hypersusceptibility to beta-lactam antibiotics associated with loss of a low-affinity penicillin-binding protein in a Streptococcus faecium mutant highly resistant to penicillin. Antimicrob Agents Chemother. 1985 Nov;28(5):678–683. doi: 10.1128/aac.28.5.678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kariyama R., Massidda O., Daneo-Moore L., Shockman G. D. Properties of cell wall-associated DD-carboxypeptidase of Enterococcus hirae (Streptococcus faecium) ATCC 9790 extracted with alkali. J Bacteriol. 1990 Jul;172(7):3718–3724. doi: 10.1128/jb.172.7.3718-3724.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kariyama R., Shockman G. D. Extracellular and cellular distribution of muramidase-2 and muramidase-1 of Enterococcus hirae ATCC 9790. J Bacteriol. 1992 May;174(10):3236–3241. doi: 10.1128/jb.174.10.3236-3241.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kawamura T., Shockman G. D. Purification and some properties of the endogenous, autolytic N-acetylmuramoylhydrolase of Streptococcus faecium, a bacterial glycoenzyme. J Biol Chem. 1983 Aug 10;258(15):9514–9521. [PubMed] [Google Scholar]
  11. Klare I., Rodloff A. C., Wagner J., Witte W., Hakenbeck R. Overproduction of a penicillin-binding protein is not the only mechanism of penicillin resistance in Enterococcus faecium. Antimicrob Agents Chemother. 1992 Apr;36(4):783–787. doi: 10.1128/aac.36.4.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lazarevic V., Margot P., Soldo B., Karamata D. Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier. J Gen Microbiol. 1992 Sep;138(9):1949–1961. doi: 10.1099/00221287-138-9-1949. [DOI] [PubMed] [Google Scholar]
  13. Ligozzi M., Pittaluga F., Fontana R. Identification of a genetic element (psr) which negatively controls expression of Enterococcus hirae penicillin-binding protein 5. J Bacteriol. 1993 Apr;175(7):2046–2051. doi: 10.1128/jb.175.7.2046-2051.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lleó M. M., Canepari P., Cornaglia G., Fontana R., Satta G. Bacteriostatic and bactericidal activities of beta-lactams against Streptococcus (Enterococcus) faecium are associated with saturation of different penicillin-binding proteins. Antimicrob Agents Chemother. 1987 Oct;31(10):1618–1626. doi: 10.1128/aac.31.10.1618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. SHOCKMAN G. D. Bacterial cell wall synthesis: the effect of threonine depletion. J Biol Chem. 1959 Sep;234:2340–2342. [PubMed] [Google Scholar]
  16. SHOCKMAN G. D., KOLB J. J., TOENNIES G. Relations between bacterial cell wall synthesis, growth phase, and autolysis. J Biol Chem. 1958 Feb;230(2):961–977. [PubMed] [Google Scholar]
  17. Sayare M., Daneo-Moore L., Shockman G. D. Influence of macromolecular biosynthesis on cellular autolysis in Streptococcus faecalis. J Bacteriol. 1972 Oct;112(1):337–344. doi: 10.1128/jb.112.1.337-344.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shockman G. D., Conover M. J., Kolb J. J., Phillips P. M., Riley L. S., Toennies G. LYSIS OF STREPTOCOCCUS FAECALIS. J Bacteriol. 1961 Jan;81(1):36–43. doi: 10.1128/jb.81.1.36-43.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. el Kharroubi A., Jacques P., Piras G., Van Beeumen J., Coyette J., Ghuysen J. M. The Enterococcus hirae R40 penicillin-binding protein 5 and the methicillin-resistant Staphylococcus aureus penicillin-binding protein 2' are similar. Biochem J. 1991 Dec 1;280(Pt 2):463–469. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES