Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Sep;178(18):5402–5409. doi: 10.1128/jb.178.18.5402-5409.1996

The non-penicillin-binding module of the tripartite penicillin-binding protein 3 of Escherichia coli is required for folding and/or stability of the penicillin-binding module and the membrane-anchoring module confers cell septation activity on the folded structure.

C Goffin 1, C Fraipont 1, J Ayala 1, M Terrak 1, M Nguyen-Distèche 1, J M Ghuysen 1
PMCID: PMC178358  PMID: 8808928

Abstract

The ftsI-encoded multimodular class B penicillin-binding protein 3 (PBP3) is a key element of the cell septation machinery of Escherichia coli. Altered ftsI genes were overexpressed, and the gene products were analyzed with respect to the level of production, stability, penicillin affinity, and cell septation activity. In contrast to the serine beta-lactamases and low-molecular-mass PBPs which are autonomous folding entities, the S-259-to-V-577 penicillin-binding module of M-1-to-V-577 PBP3 lacks the amino acid sequence information for correct folding. The missing piece of information is provided by the associated G-57-to-E-258 non-penicillin-binding module which functions as a noncleaved, pseudointramolecular chaperone. Key elements of the folding information reside within the motif 1-containing R-60-to-W-110 polypeptide segment and within G-188-to-D-197 motif 3 of the n-PB module. The intermodule interaction is discussed in the light of the known three-dimensional structure (at 3.5-A [0.35-nm] resolution) of the analogous class B PBP2x of Streptococcus pneumoniae (S. Pares, N. Mouz, Y. Pétillot, R. Hakenbeck, and O. Dideberg, Nature Struct. Biol. 3:284-289, 1996). Correct folding and adoption of a stable penicillin-binding conformation are necessary but not sufficient to confer cell septation activity to PBP3 in exponentially growing cells. The in vivo activity of PBP3 also depends on the M-1-to-E-56 amino-terminal module which encompasses the cytosol, the membrane, and the periplasm and which functions as a noncleaved pseudo-signal peptide.

Full Text

The Full Text of this article is available as a PDF (767.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belder J. B., Nguyen-Distèche M., Houba-Herin N., Ghuysen J. M., Maruyama I. N., Hara H., Hirota Y., Inouye M. Overexpression, solubilization and refolding of a genetically engineered derivative of the penicillin-binding protein 3 of Escherichia coli K12. Mol Microbiol. 1988 Jul;2(4):519–525. doi: 10.1111/j.1365-2958.1988.tb00058.x. [DOI] [PubMed] [Google Scholar]
  2. Broome-Smith J. K., Hedge P. J., Spratt B. G. Production of thiol-penicillin-binding protein 3 of Escherichia coli using a two primer method of site-directed mutagenesis. EMBO J. 1985 Jan;4(1):231–235. doi: 10.1002/j.1460-2075.1985.tb02340.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Charlier P., Buisson G., Dideberg O., Wierenga J., Keck W., Laible G., Hakenbeck R. Crystallization of a genetically engineered water-soluble primary penicillin target enzyme. The high molecular mass PBP2x of Streptococcus pneumoniae. J Mol Biol. 1993 Aug 5;232(3):1007–1009. doi: 10.1006/jmbi.1993.1452. [DOI] [PubMed] [Google Scholar]
  4. Dobson C. M. Finding the right fold. Nat Struct Biol. 1995 Jul;2(7):513–517. doi: 10.1038/nsb0795-513. [DOI] [PubMed] [Google Scholar]
  5. Eder J., Fersht A. R. Pro-sequence-assisted protein folding. Mol Microbiol. 1995 May;16(4):609–614. doi: 10.1111/j.1365-2958.1995.tb02423.x. [DOI] [PubMed] [Google Scholar]
  6. Fraipont C., Adam M., Nguyen-Distèche M., Keck W., Van Beeumen J., Ayala J. A., Granier B., Hara H., Ghuysen J. M. Engineering and overexpression of periplasmic forms of the penicillin-binding protein 3 of Escherichia coli. Biochem J. 1994 Feb 15;298(Pt 1):189–195. doi: 10.1042/bj2980189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frydman J., Nimmesgern E., Ohtsuka K., Hartl F. U. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature. 1994 Jul 14;370(6485):111–117. doi: 10.1038/370111a0. [DOI] [PubMed] [Google Scholar]
  8. Ghuysen J. M., Frère J. M., Leyh-Bouille M., Nguyen-Distèche M., Coyette J. Active-site-serine D-alanyl-D-alanine-cleaving-peptidase-catalysed acyl-transfer reactions. Procedures for studying the penicillin-binding proteins of bacterial plasma membranes. Biochem J. 1986 Apr 1;235(1):159–165. doi: 10.1042/bj2350159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ghuysen J. M. Molecular structures of penicillin-binding proteins and beta-lactamases. Trends Microbiol. 1994 Oct;2(10):372–380. doi: 10.1016/0966-842x(94)90614-9. [DOI] [PubMed] [Google Scholar]
  10. Goloubinoff P., Gatenby A. A., Lorimer G. H. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature. 1989 Jan 5;337(6202):44–47. doi: 10.1038/337044a0. [DOI] [PubMed] [Google Scholar]
  11. Hedge P. J., Spratt B. G. A gene fusion that localises the penicillin-binding domain of penicillin-binding protein 3 of Escherichia coli. FEBS Lett. 1984 Oct 15;176(1):179–184. doi: 10.1016/0014-5793(84)80936-9. [DOI] [PubMed] [Google Scholar]
  12. Hlodan R., Tempst P., Hartl F. U. Binding of defined regions of a polypeptide to GroEL and its implications for chaperonin-mediated protein folding. Nat Struct Biol. 1995 Jul;2(7):587–595. doi: 10.1038/nsb0795-587. [DOI] [PubMed] [Google Scholar]
  13. Hunt J. F., Weaver A. J., Landry S. J., Gierasch L., Deisenhofer J. The crystal structure of the GroES co-chaperonin at 2.8 A resolution. Nature. 1996 Jan 4;379(6560):37–45. doi: 10.1038/379037a0. [DOI] [PubMed] [Google Scholar]
  14. Mukherjee A., Lutkenhaus J. Guanine nucleotide-dependent assembly of FtsZ into filaments. J Bacteriol. 1994 May;176(9):2754–2758. doi: 10.1128/jb.176.9.2754-2758.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nagasawa H., Sakagami Y., Suzuki A., Suzuki H., Hara H., Hirota Y. Determination of the cleavage site involved in C-terminal processing of penicillin-binding protein 3 of Escherichia coli. J Bacteriol. 1989 Nov;171(11):5890–5893. doi: 10.1128/jb.171.11.5890-5893.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nakamura M., Maruyama I. N., Soma M., Kato J., Suzuki H., Horota Y. On the process of cellular division in Escherichia coli: nucleotide sequence of the gene for penicillin-binding protein 3. Mol Gen Genet. 1983;191(1):1–9. doi: 10.1007/BF00330881. [DOI] [PubMed] [Google Scholar]
  17. Pares S., Mouz N., Pétillot Y., Hakenbeck R., Dideberg O. X-ray structure of Streptococcus pneumoniae PBP2x, a primary penicillin target enzyme. Nat Struct Biol. 1996 Mar;3(3):284–289. doi: 10.1038/nsb0396-284. [DOI] [PubMed] [Google Scholar]
  18. Romeis T., Höltje J. V. Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylase in Escherichia coli. J Biol Chem. 1994 Aug 26;269(34):21603–21607. [PubMed] [Google Scholar]
  19. Shinde U., Inouye M. Intramolecular chaperones and protein folding. Trends Biochem Sci. 1993 Nov;18(11):442–446. doi: 10.1016/0968-0004(93)90146-e. [DOI] [PubMed] [Google Scholar]
  20. Silen J. L., McGrath C. N., Smith K. R., Agard D. A. Molecular analysis of the gene encoding alpha-lytic protease: evidence for a preproenzyme. Gene. 1988 Sep 30;69(2):237–244. doi: 10.1016/0378-1119(88)90434-9. [DOI] [PubMed] [Google Scholar]
  21. Spratt B. G., Cromie K. D. Penicillin-binding proteins of gram-negative bacteria. Rev Infect Dis. 1988 Jul-Aug;10(4):699–711. doi: 10.1093/clinids/10.4.699. [DOI] [PubMed] [Google Scholar]
  22. Sánchez M., Valencia A., Ferrándiz M. J., Sander C., Vicente M. Correlation between the structure and biochemical activities of FtsA, an essential cell division protein of the actin family. EMBO J. 1994 Oct 17;13(20):4919–4925. doi: 10.1002/j.1460-2075.1994.tb06819.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vanhove M., Raquet X., Frère J. M. Investigation of the folding pathway of the TEM-1 beta-lactamase. Proteins. 1995 Jun;22(2):110–118. doi: 10.1002/prot.340220204. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES