Skip to main content
Virology Journal logoLink to Virology Journal
. 2007 Jan 19;4:11. doi: 10.1186/1743-422X-4-11

Comparative genomic analysis of the family Iridoviridae: re-annotating and defining the core set of iridovirus genes

Heather E Eaton 1, Julie Metcalf 1, Emily Penny 1, Vasily Tcherepanov 2, Chris Upton 2, Craig R Brunetti 1,
PMCID: PMC1783846  PMID: 17239238

Abstract

Background

Members of the family Iridoviridae can cause severe diseases resulting in significant economic and environmental losses. Very little is known about how iridoviruses cause disease in their host. In the present study, we describe the re-analysis of the Iridoviridae family of complex DNA viruses using a variety of comparative genomic tools to yield a greater consensus among the annotated sequences of its members.

Results

A series of genomic sequence comparisons were made among, and between the Ranavirus and Megalocytivirus genera in order to identify novel conserved ORFs. Of these two genera, the Megalocytivirus genomes required the greatest number of altered annotations. Prior to our re-analysis, the Megalocytivirus species orange-spotted grouper iridovirus and rock bream iridovirus shared 99% sequence identity, but only 82 out of 118 potential ORFs were annotated; in contrast, we predict that these species share an identical complement of genes. These annotation changes allowed the redefinition of the group of core genes shared by all iridoviruses. Seven new core genes were identified, bringing the total number to 26.

Conclusion

Our re-analysis of genomes within the Iridoviridae family provides a unifying framework to understand the biology of these viruses. Further re-defining the core set of iridovirus genes will continue to lead us to a better understanding of the phylogenetic relationships between individual iridoviruses as well as giving us a much deeper understanding of iridovirus replication. In addition, this analysis will provide a better framework for characterizing and annotating currently unclassified iridoviruses.

Background

Iridoviruses are large DNA viruses (~120–200 nm in diameter) that replicate in the cytoplasm of infected cells. Iridovirus genomes are circularly permuted and terminally redundant, and range in size from 105 to 212 kbp [1,2]. The family Iridoviridae is currently subdivided into five genera:Chloriridovirus, Iridovirus, Lymphocystivirus, Megalocytivirus, and Ranavirus [3].

Iridoviruses have been found to infect invertebrates and poikilothermic vertebrates, including amphibians, reptiles, and fish [4]. Iridovirus infections produce symptoms that range from subclinical to very severe, which may also result in significant mortality [5-9]. The high pathogenicity associated with some members of the iridovirus family has had a significant impact on modern aquaculture, fish farming, and wildlife conservation. For example, systemic iridovirus infections have been found in economically important freshwater and marine fish species worldwide. In addition, iridovirus infections have been implicated in amphibian population declines, representing a set of emerging infectious diseases whose spread has been accelerated by human activities [10-14].

Despite the economic and ecological significance of iridoviruses, very little is currently known about their molecular biology. One approach towards gaining a deeper understanding of iridoviral pathogenesis is to investigate the core set of essential genes conserved among all members of the family. The genomes of twelve iridoviruses, including at least one from each genus, have been completely sequenced (Table 1). According to the previously published annotations, these genomes contained only 19 core genes associated with a variety of viral activities: transcriptional regulation, DNA metabolism, protein modification, and viral structure. Definition of this core set of genes also highlights those genes that are conserved across some, but not all, genera, and unique genes found within a single species. These non-core genes may be involved in specific virus-host interactions, enhancement of virus replication, and augmented pathogenesis in certain species.

Table 1.

Iridovirus Genomes

Virus Abbreviation Genus Genome Size (bp) # ORFs* GenBank accession # Ref
Frog virus 3 FV3 Ranavirus 105903 97 AY548484 [27]
Tiger frog virus TFV Ranavirus 105057 103 AF389451 [1]
Ambystoma tigrinum virus ATV Ranavirus 106332 92 AY150217 [30]
Grouper iridovirus GIV Ranavirus 139793 139 AY666015 [21]
Singapore grouper iridovirus SGIV Ranavirus 140131 139 AY521625 [22]
Lymphocystis disease virus 1 LCDV-1 Lymphocystivirus 102653 108 L63545 [34]
Lymphocystis disease virus China LCDV-China Lymphocystivirus 186250 178 AY380826 [24]
Infectious spleen and kidney necrosis virus ISKNV Megalocytivirus 111362 117 AF371960 [20]
Rock bream iridovirus RBIV Megalocytivirus 112080 116 AY532606 [19]
Orange-spotted grouper iridovirus OSGIV Megalocytivirus 112636 116 AY894343 [18]
Invertebrate iridescent virus 6 IIV-6 Iridovirus 212482 211 AF303741 [2]
Invertebrate iridescent virus 3 IIV-3 Chloriridovirus 191100 126 DQ643392 [26]

*The number of ORFs in each viral genome reflects the results of the analysis done in this paper

Despite the growing number of sequenced iridovirus genomes, no systematic comparative genomic analysis of the family has yet been performed. Thus, annotation of these genomes has been performed without standardization and has so far been guided primarily by the position of start/stop codons rather than the presence of homologous sequences. As a result, some long overlapping potential ORFs have been automatically designated as coding sequences, and smaller homologous ORFs overlooked. In this paper, we have taken a comparative genomics approach to re-examine the annotation of all twelve iridovirus genomes, using the Viral Orthologous Clusters (VOCs) [15] and Viral Genome Organizer (VGO) [16] software. These re-annotated genomes were then analysed further, both to define the core set of iridovirus genes more accurately, and to provide a deeper understanding into the phylogenetic relationship between individual iridovirus species.

Results & discussion

Re-annotation of Iridovirus genomes

One objective of this project was to demonstrate the application of comparative genomics to annotating viral genomes, particularly those that have been poorly characterized experimentally. In an earlier study, we utilized comparative genomics to identify previously unannotated small viral ORFs in the Poxviridae [17]. Here, we focused our analysis on the Iridoviridae family, which represents a challenge in genome annotation since there is little experimental evidence available to confirm gene expression. Another problem is that iridovirus promoter elements have not been well characterized, and thus cannot be used as a reliable criterion for assigning ORFs. These combined factors made previous iridovirus gene annotation a somewhat arbitrary process, resulting in closely related iridovirus species with dramatic differences in their genomic annotations. Therefore, we decided to analyse all members of this family using a standardized comparative genomics approach, using the fact that ORFs that are conserved in more than one divergent species are likely to be functional genes.

Analysis was begun with the Megalocytivirus genus, which contains three sequenced genomes: infectious spleen and kidney necrosis virus (ISKNV), rock bream iridovirus (RBIV), and orange-spotted grouper iridovirus (OSGIV). These three viruses display a co-linear arrangement of genes with an overall DNA sequence identity of greater than 90%. In the analysis of this genus, differences in gene content were examined in detail. Dotplots were used to determine presence of orthologous DNA and a variety of BLAST searches and the VGO genome visualization software were used to determine the reason (frameshifts, extra stop codons) behind the apparent absence of some ORFs.

Using this approach, a substantial number of ORFs were either added to, or deleted from members of the Megalocytivirus genus (Table 2). OSGIV and RBIV share 99% DNA sequence identity, and thus are probably different strains of the same virus; however, previous annotation described only 82 out of 118 total annotated ORFs shared by the two genomes [18,19]. After our re-analysis, the RBIV and OSGIV genomes had an identical complement of annotated genes. Furthermore, this re-annotated ISKNV genome contained 110 ORFs orthologous with both RBIV and OSGIV (compared to 71 in the old annotation.) (Table 2) [18,20].

Table 2.

Re-annotation of the Megalocytivirus genus

ISKNVa Start Stopc aad RBIVa Start Stopc aad OSGIVa Start Stopc aad
1L 1270 134 378 1L 1270 134 378 1L 1270 134 378
2R 1394 2044 216 2Rb 1394 1597/1781 67 2R 1394 1789 131
- - - - 3R 1841 2056 71 3R 1849 2064 71
3L 2634 2077 185 4L 2605 2102 167 4L 2613 2110 167
4L 2890 2681 69 5L 2800 2624 58 5L 2808 2632 58
5L 3648 2893 251 6L 3541 2876 221 6L 3548 2883 221
6L 5155 3794 453 7L 5147 3786 453 7L 5154 3793 453
7L 6631 5174 485 8L 6621 5164 485 8L 6628 5171 485
8R 6669 8246 525 9R 6692 8239 515 9R 6699 8246 515
9R 8342 8503 53 10R 8335 8496 53 10R 8342 8503 53
10L 9054 8662 130 11L 9047 8655 130 11L/12Lb 9055 8849/8662 130
11L 9311 9051 86 11.5L 9304 9044 86 13L 9312 9052 86
12R 9330 9659 110 12R 9323 9655 110 14R 9331 9663 110
13R 9669 11054 461 13R 9662 11059 465 15R 9670 11067 465
14R 11309 12268 319 14R 11314 12288 324 16R 11322 12296 324
15R 12278 13069 263 15R 12298 13089 263 17R 12302 13093 263
16L 13716 13129 195 16L 13733 13146 195 18L 13738 13151 195
17L 14095 13718 125 17L 14086 13748 112 19L 14088 13753 111
17.5R 14089 14325 78 18R 14171 14410 79 20R 14094 14351 85
18.5Lb 14563 14233 109 19L 14648 14472 58 21L 14607 14431 58
19R 14579 17425 948 20R 14664 17510 948 22R 14623 17469 948
20L 17642 17454 62 21L 17756 17574 60 23L 17715 17533 60
21L 17900 17778 40 21.5L 18014 17892 40 24L 17973 17851 40
22L 19489 17990 499 22L 19714 18104 536 25L 19715 18063 550
23R 19562 22132 856 23R 19787 22204 805 26R 19788 22922 1044
24R 22300 23238 312 26R 23035 23973 312 27R 23207 24145 312
25R 23354 23779 141 27R 23997 24380 127 28R 24169 24696 175
26L 24145 23822 107 27.5L 24697 24377 106 29L 25013 24693 106
27L 25063 24167 298 28L 25615 24719 298 30L 25931 25035 298
28L 28559 25080 1159 29L 29138 25632 1168 31L 29454 25948 1168
29L 28814 28593 73 29.5Lb 29362 29087/29145 91 32L 29682 29461 73
31.5L 29414 28884 176 30.5L 29957 29430 175 33.5L 30277 29750 175
32R 29447 30061 204 31R 29990 30622 210 34R 30310 30942 210
33L 31079 30138 313 32L 31654 30713 313 35L 31935 31033 300
34R 31144 34278 1044 33R 31700 34861 1053 36R 32018 35176 1052
35L 35508 34360 382 34L 36067 34934 377 37L 36382 35249 377
36R 35546 36601 351 35.5R 36061 37113 350 38R 36376 37431 351
37L 37950 36598 450 37L 38219 37110 369 39L 38777 37428 449
38L 39395 37959 478 38L 39974 38469 501 40L 40225 38786 479
39R 39439 40311 290 39.5Rb 40012 40506/40857 164 41R 40290 41168 292
40L 41443 40304 379 41L 41995 40850 381 42L 42306 41161 381
41L 42788 41445 447 42L 43346 41997 449 43L 43657 42308 449
42R 42803 43396 197 43R 43361 43959 198 44R 43672 44271 199
43L 43842 43480 120 43.5L 44405 43975 142 45L 44717 44355 120
44L 44645 43845 266 44L 45208 44408 266 46L 45524 44724 266
45L 45564 44650 304 45L 46127 45213 304 47L 46443 45529 304
46L 46241 45558 227 46L 46804 46121 227 48L 47120 46437 227
47R 46401 46664 87 47R 47150 46887 87 49R 47280 47543 87
48R 46661 47005 114 47.5Rb 47224 47433/47588 69 50R 47540 47893 117
49R 47021 47191 56 48.5R 47604 47774 56 51R 47909 48079 56
50L 47678 47250 142 49L 48270 47842 142 52L 48575 48147 142
51R 47733 47864 43 - - - - - - - -
52L 48403 47951 150 50L 48999 48547 150 53L 49306 48854 150
53R 48405 48620 71 51R 49001 49195 64 54R 49308 49502 64
54L 49559 48633 308 52L 50173 49229 314 55L 50480 49536 314
55L 50508 49582 308 53L 51137 50196 313 56L 51444 50503 313
56L 51166 50519 215 54L 51795 51148 215 57L 52102 51455 215
57L 51433 51173 86 55L 52062 51802 86 58L 52369 52109 86
59L 52414 51749 221 56L 52839 52327 170 59L 53146 52634 170
61L 53162 52359 267 57L 53709 52903 268 60L 54016 53210 268
62L 56785 53159 1208 58L 57467 53706 1253 61L/62Lb 55131 54013/53893 372
63L 59875 57227 882 59L 60567 57919 882 63L 60876 58228 882
64L 61393 59918 491 60Lb 62102 60855/60635 415 64L 62416 60944 490
65L 61900 61439 153 61L 62611 62144 155 65L 62928 62458 156
66L 63025 61982 347 62L 63744 62662 360 66L 64061 62979 360
67L 63855 63271 194 63.5L 64446 63865 193 67.5L 64763 64182 193
68L 65329 63896 477 64L 65917 64484 477 69L 66234 64801 477
69L 66001 65336 221 65Lb 66661 66215/65929 148 70L 66977 66246 243
70L 66331 66101 76 - - - - - - - -
71L 68042 66432 536 68L 68529 67120 469 71L 68973 67417 518
72R 68173 69177 334 - - - - - - - -
73R 69203 69622 139 69Rb 68717 69191/69135 157 72R 69078 69497 139
74R 69669 70682 337 70R 69184 70203 339 73R 69546 70568 340
75L 71043 70777 88 71L 70573 70304 89 74L 70938 70669 89
76L 74017 71045 990 72L 73541 70575 988 75L 73912 70940 990
77R 74035 75369 444 73R 73559 74893 444 76R 73930 75264 444
78R 75366 75830 154 75R 74890 75354 154 77R 75261 75725 154
79L 76053 75832 73 76L 75580 75356 74 78L 75951 75727 74
- - - - 77R 75664 76137 157 79R 76039 76512 157
80L 76368 76165 67 - - - - - - - -
81R 76367 76864 165 78R 76150 76647 165 80R 76525 77022 165
82L 78007 76901 368 79L 77802 76696 368 81L 78177 77071 368
83R 78152 78418 88 80R 77827 78225 132 82R 78202 78600 132
84L 79881 78526 451 81L 79556 78252 434 83L 79931 78627 434
85R 79884 80486 200 82R 79643 80173 176 84R 80018 80548 176
86R 80483 80947 154 82.5R 80170 80637 155 84.5L 80545 81012 155
87R 80940 81710 256 83R 80603 81400 265 85R 80978 81775 265
88R 81717 83720 667 84R 81503 83425 640 86R/87Rb 82234 83805/82279 523
90.5L 84663 83701 320 85L 84457 83630 275 88.5L 84811 83786 341
93L 85786 84860 308 86L 85504 84578 308 90L 85918 84992 308
94L 86296 85796 166 87L 86014 85514 166 91L 86428 85928 166
95L 87481 86321 386 88L 87202 86039 387 92L 87616 86453 387
96L 88298 87489 269 89.5Lb 87601 87218/87210 127 93L 88361 87624 245
97.5L 88723 88232 163 90L 88443 87952 163 94L 88857 88366 163
99L 89097 88774 107 91L 88814 88491 107 95L 89229 88906 107
100L 89689 89144 181 92L 89515 88868 215 96L 90024 89377 215
101L 90251 89736 171 93.5L 89999 89470 175 97L 90508 89993 171
102R 90311 91753 480 94R 90068 91513 481 98R 90577 92022 481
103R 91760 92161 133 95.5R 91477 91935 152 99R 92029 92442 137
104R 92215 92991 258 96R 91994 92773 259 100R 92501 93280 259
105R 92993 93358 121 97R 92775 93146 123 101R 93282 93653 123
- - - - 98R 93240 94127 295 102R 93747 94634 295
106L 94501 93482 339 99L 95042 94221 273 103L 95548 94676 290
108.5L 95093 94494 199 100.5L 95699 95068 209 104.5L 96217 95574 213
109L 97950 95185 921 101L 98557 95792 921 106L 99060 96298 920
110R 97997 98152 51 101.5L 98609 98764 51 107R 99113 99268 51
111L 99039 98149 296 102L 99657 98761 298 108Lb 99885 99265/99849 206
112R 99059 99802 247 103Rb 99677 100426/100422 249 109R 100183 100926 247
113R 99937 100290 117 104.5R 100493 100909 138 110R 100998 101414 138
114L 103159 100334 941 106Lb 103615 102539/100953 358 111L 104041 101594 815
115R 103203 104213 336 108.5R 104050 104781 243 112R 104476 105486 336
116R 104219 105667 482 110R 105060 106493 477 113R 105547 106701 384
117L 106395 105721 224 111L 107221 106547 224 114L 107652 106978 224
118L 108093 106723 456 112L 108913 107549 454 115L 109299 107986 437
119R 108105 108392 95 113R 108931 109104 57 116R 109369 109656 95
120R 108424 108933 169 114R 109248 109637 129 117R 109687 110193 168
121L 109584 108934 216 115L 110419 109756 220 118L 110849 110214 211
122R 109594 110313 239 116R 110429 111148 239 119R 110859 111578 239
123R 110391 110576 61 117R 111226 111420 64 120R 111656 111850 64
124L 111351 110665 228 118L 112037 111576 153 121L 112625 111939 228

aORFs that have been added or altered are highlighted in bold. If a previously annotated ORF is not listed in the table, it has been deleted.

bPotentially frameshifted ORF

cWhere an ORF has a potential sequencing error resulting in a frameshift mutation, 2 stop codons are provided in the format X/Y. The first number represents the actual physical stop in the reported sequence. The second number is the proposed stop if a sequencing error occurred.

dLength of ORF in amino acids

In the process of re-examining these genomes, we annotated a number of genes containing apparent frameshift mutations between species. In RBIV we annotated ten genes with potential frameshift mutations, while OSGIV had four such genes (Table 2). All of the genes containing potential frameshift mutations had orthologs in the other two members of the Megalocytivirus genus (Table 2). In some cases, these mutations may be the result of natural mutations within the viruses; however, it is also possible that these apparent frameshift mutations are actually sequencing errors. For both RBIV and OSGIV, PCR primers based on the ISKNV sequence were used to amplify genomic fragments, which were subsequently sequenced [18,19]. It is possible that errors were introduced during the PCR process, leading to apparent frameshifts in the reported sequence. It is interesting to note that the genomic sequence of ISKNV (sequenced using subcloned fragments rather than PCR products) [20], had significantly fewer annotation changes made during our re-analysis. Though we have not experimentally proven that the frameshift mutations in OSGIV and RBIV are the result of sequencing errors, it would be useful to focus future sequencing efforts on these regions, to determine if the reported sequences are indeed correct.

After re-annotating the Megalocytivirus genus, we applied the same comparative genomic analysis to the Ranavirus genus. The genus contains five sequenced members divided into two groups, each with a high degree of sequence conservation and a co-linear arrangement of genes. The first group is comprised of frog virus 3 (FV3), tiger frog virus (TFV), and Ambystoma tigrinum virus (ATV). The second group contains Singapore grouper iridovirus (SGIV) and grouper iridovirus (GIV).

The first step in the re-annotation of the Ranavirus genus was a comparative genomic analysis of FV3, TFV, and ATV. This resulted in an increase in the number of conserved annotated genes from 76 to 87 (Table 3). Subsequent re-analysis of the second Ranavirus group, containing SGIV and GIV, resulted in an increase from 131 to 138 conserved annotated ORFs (Table 4). It should be noted that two of the newly annotated ORFs, SGIV 0.5L and GIV 120.5L, appear to "wrap around", beginning at one end of the genome with the remainder of the ORF located at the opposite end [21,22]. These apparent "split ORFs" are actually the result of the circularly permutated iridovirus genome being represented as a linear genomic sequence, when the arbitrarily chosen start point happens to fall in the middle of an ORF [23].

Table 3.

Re-annotation of FV3, TFV, and ATV of the Ranavirus genus

FV3a Start Stopc aad TFVa Start Stopc aad ATVa Start Stopc aad
1R 272 1042 256 105R 103809 104576 256 91R 104836 105606 256
2L 2611 1649 320 2Lb 1028 315/11 237 1L 981 70 303
2.5L 3488 2649 279 2.5L 1943 1065 292 2L 1858 1019 279
3R 3418 4734 438 4R 1937 3151 404 3R 1892 3106 404
4R 4775 4957 60 5R 3190 3372 60 4R 3149 3331 60
5R 5390 6004 204 6R 3816 4418 200 - - - -
6R 6007 6234 75 - - - - - - - -
- - - - 6.5R 4411 4578 55 - - - -
7.5L 7025 7411 128 7L 5452 5024 142 5L 4416 3994 140
8R 7503 11384 1293 8R 5531 9415 1294 6R 4495 8379 1294
9L 14599 11753 948 9L 12599 9753 948 7L 11725 8879 948
10R 14615 15028 137 10R 12615 13028 137 8R 11741 12154 137
11R 15378 15590 70 11R 13380 13592 79 88L 102924 102712 70
12L 16549 15656 297 12L 14551 13658 297 87R 101753 102646 297
- - - - 13L 14947 14747 66 86R 101169 101363 64
13R 17090 17296 68 14.5Rb 15041 15184/15247 47 85.5L 101128 100871 85
14R 17311 17670 119 15R 15261 15620 119 84L 100856 100482 124
15R 17766 18734 322 16R 15716 16663 315 83R 100400 99474 308
16R 19014 19841 275 17R 16838 17665 275 82.5L 98809 98438 123
17L 21590 20082 502 18L 19414 17906 502 81R 96410 97918 502
18L 21864 21628 78 18.5L 19687 19451 78 80.5R 96137 96373 78
19R 21916 24471 851 19R 19686 22271 861 80L 96083 94086 665
20R 24519 24965 148 20R 22319 22774 151 79L 94038 93589 149
21L 25861 25202 219 21L 23657 23998 219 78R 92383 93042 219
22R 25991 28912 973 22R 23789 26716 975 77L 92253 89326 975
23R 29290 30438 382 23R 27093 28241 382 53R 58082 59230 382
24R 30821 31918 365 24R 28636 29733 365 54R 59613 60710 365
25R 32112 32900 262 25R 29930 30709 259 55R 62328 63335 335
- - - - 26R 30778 30936 52 56R 63402 63500 32
26Rb 32967 33197 76 27R 31033 31812 259 57R 63659 64438 259
- - - - 28L 32190 32002 62 - - - -
27R 33728 36640 970 29R 32345 35257 970 58R 64968 67880 970
28R 36689 37177 162 30R 35306 35794 162 59R 67929 68417 162
29L 37652 37356 98 31L 36122 35823 99 - - - -
30R 37854 38006 50 - - - - - - - -
31R 38068 38487 139 32R 36565 36984 139 60R 68786 69205 139
32R 38537 40426 629 33R 37098 39047 649 61R 69255 71471 738
33R 40509 40700 63 34R 39133 39324 63 62R 71555 71746 63
34R 40844 41164 106 35.5R 39467 39787 106 62.5R 71894 72235 113
35L 41717 41256 153 37L 40308 39772 178 63L 72576 72220 118
36L 42353 41256 365 38.5Lb 40938 40543/40367 131 - - - -
- - - - 39R 41112 41246 44 - - - -
37R 42749 43378 209 40R 41296 41952 218 64R 74110 74739 209
38R 43519 45216 565 41R 42091 43788 565 65R 74878 76575 565
39R 45322 45672 116 42R 43899 44249 116 66R 76682 76948 88
40R 45761 46309 182 43R 44335 44883 182 67R 77048 77671 207
- - - - 44R 44973 45239 88 68R 77899 78039 46
41R 46691 50188 1165 45R 45270 48767 1165 69R 78111 81608 1165
43.5Lb 50940 51455/5684 171 46L 50362 49133 409 70L 82913 82152 253
45L 52348 51938 136 47L 50899 50489 136 71L 83450 83040 136
46L 52968 52723 81 48L 51411 50953 152 72L 84331 83504 275
47L 53509 53093 138 49L 51953 51537 138 73L 84874 84458 138
48L 53763 53512 83 50L 52207 51956 83 74L 85187 84804 127
49L 54621 53872 249 51L 52899 52315 194 75L 86776 85235 513
50L 55459 54770 229 52L 53876 53136 246 - - - -
51R 55539 57224 561 53R 53956 55641 561 76R 86858 88543 561
52L 58548 57481 355 54L 56965 55898 355 52R 57441 57602 53
53R 58886 60454 522 55R 57301 58869 522 51L 57102 55522 526
54L 60899 60669 76 - - - - - - - -
55L 62232 60937 431 56L 60615 59320 431 50R 53770 55065 431
- - - - 57L 60772 60623 49 49R 53613 53762 49
56R 62320 62757 145 58R 60809 61213 134 48L 53576 53172 134
57R 62871 64367 498 59R 61254 62750 498 47L 53130 51634 498
- - - - 60L 62888 62757 43 - - - -
58.5R 64819 65373 184 61R 63264 63818 184 46L 50770 50216 184
59L 67014 65956 352 62L 65445 64387 352 45R 48676 49734 352
60R 67176 70217 1013 63R 65605 68646 1013 44L 48512 45471 1013
61L 70408 70226 60 - - - - - - - -
- - - - 64R 69029 69151 40 - - - -
62L 74516 70851 1221 65L 72940 69281 1219 43R 41447 45112 1221
62.5R 74515 74778 87 66.5R 72927 73202 91 42.5L 41460 41185 91
63R 74895 75389 164 68R 73319 73813 164 42L 41068 40631 145
64R 75529 75816 95 69.5R 73946 74209 87 40L 40492 40205 95
65L 76373 76209 54 - - - - - - - -
66L 76921 76370 183 70.5L 75301 74685 204 38.5R 39094 36681 195
67L 78139 76976 387 71L 76525 75362 387 38R 37876 39039 387
68R 78422 78709 95 72R 76785 76982 65 37bL 37592 37416 58
- - - - 73L 77175 77020 51 36R 36736 36891 51
69R 78845 79111 88 74R 77244 77507 88 35L 36677 36411 88
70R 79129 79503 124 75R 77507 77902 131 34.5L 36392 36018 124
71R 79543 79776 77 76R 77942 78175 77 34L 35978 35742 78
72L 80549 79833 238 77L 78948 78232 238 32R 34970 35293 107
73L 81971 80997 324 78L 80299 79325 324 31R 33319 34311 330
74L 83258 82146 370 79L 81498 80506 330 30R 31947 33128 393
75L 83544 83290 84 80L 81809 81555 84 29R 31637 31891 84
76R 83607 83828 73 81R 81872 82093 73 28L 31574 31353 73
77L 84172 83825 115 82L 82437 82090 115 27R 31009 31356 115
78L 85395 84757 212 83L 83568 82894 224 - - - -
79R 85531 87249 572 84R 83668 85386 572 26L 30729 28999 576
80L 88987 87872 371 85L 86988 85873 371 25R 27224 28345 373
81R 89043 89321 92 86R 87046 87324 92 24L 27168 26890 92
82R 89450 89923 157 87R 87454 87927 157 23L 26762 26289 157
- - - - 88R 88138 88512 124 22L 25564 25277 95
83R 90373 91017 214 89R 88857 89501 214 21L 24912 24268 214
84R 91389 92126 245 90R 89903 90640 245 20L 23923 23141 260
85R 92201 92788 195 91.5R 90715 91302 195 19L 23066 22479 195
86L 93363 93178 61 92L 91943 91650 97 18R 21742 22119 125
87L 95533 93716 605 93L 94096 92279 605 17R 19571 21397 608
88R 95566 96018 150 94R 94129 94581 150 16L 19538 19086 150
89R 96086 97252 388 95R 94649 95845 398 15L 19018 17744 424
90R 97345 98736 463 96R 95938 97329 463 14L 17651 16260 463
91R 98860 100047 395 97R 97453 98640 395 13L 16136 14949 395
92R 100398 100637 79 98R 98927 99232 101 - - - -
93L 100986 100819 55 99L 99593 99426 55 12R 14091 14246 51
94L 101563 101096 155 100R 100169 99702 155 11L 13512 13979 155
95R 101656 102747 363 101R 100180 101352 390 10L 13419 12325 364
96R 103549 104220 223 103R 102169 102840 223 89R 103279 103965 228
97R 104303 104716 137 104R 102923 103372 149 90R 104031 104444 137

aORFs that have been added or altered are highlighted in bold. If a previously annotated ORF is not listed in the table, it has been deleted.

bPotentially frameshifted ORF

cWhere an ORF has a potential sequencing error resulting in a frameshift mutation, 2 stop codons are provided in the format X/Y. The first number represents the actual physical stop in the reported sequence. The second number is the proposed stop if a sequencing error occurred.

dLength of ORF in amino acids

Table 4.

Re-annotation of SGIV and GIV of the Ranavirus genus

SGIVa Start Stopc aad GIVa Start Stopc aad
14L 12773 12348 141 1.3L 2020 1595 141
15L 13000 12821 59 1.5L 2247 2068 59
16L 14289 13048 413 2L 3536 2295 413
18R 14317 15174 285 3R 3564 4421 285
19R 15196 16224 342 4R 4443 5399 318
20L 17246 16278 322 5L 6421 5453 322
21L 17725 17306 139 6L 6900 6475 141
22L 18277 17777 166 7L 7486 6950 178
24L 18774 18319 151 8L 7983 7528 151
25L 20488 18956 510 9L 9682 8165 505
26R 20567 22267 556 10R 9761 11461 566
28L 23363 22350 337 11L 12559 11546 337
29L 24445 23447 332 12L 13659 12643 338
30L 25635 24610 341 13L 14850 13816 344
31L 27160 26144 338 14L 16384 15362 340
32.5L 28666 27609 352 15L 17904 16846 352
33L 29760 28726 344 16L 19010 17964 348
34L 30161 29823 112 16.5L 19411 19073 112
35L 31388 30261 375 17L 20638 19511 375
36L 32515 31526 329 18L 21835 20771 354
37L 33696 32668 342 19L 23016 21988 342
38L 34236 33724 170 20L 23556 23044 170
39L 37417 34262 1051 21L 26738 23583 1051
41L 37978 37547 143 22L 27296 26865 143
42R 38058 38285 75 - - - -
43R 38285 40288 667 23R 27608 29605 665
45L 41090 40362 242 24L 30407 29679 242
46L 41866 41120 248 25L 31204 30467 245
47L 43063 41909 384 26L 32401 31247 384
48L 43489 43214 91 27L 32824 32549 91
49L 44002 43535 155 28L 33336 32857 159
50L 44695 44033 220 29L 34029 33367 220
51L 45563 44868 231 30L 34896 34201 231
52L 37997 35097 968 31L 37997 35097 966
54R 48777 49424 215 32R 38100 38747 215
55R 49447 50169 240 33R 38770 39492 240
56R 50198 50938 246 34R 39521 40261 246
57L 54510 51004 1168 35L 43833 40327 1168
59L 55000 54560 146 35.5L 44323 43391 146
60R 54967 57879 970 36R 44348 47200 950
61R 57914 58528 204 37R 47235 47849 204
62R 58593 59363 256 38R 47914 48708 264
64R 59415 61133 572 39R 48760 50478 572
65R 61268 61510 80 39.5R 50614 50856 80
66R 61603 61845 80 39.7R 50949 51191 80
67L 62482 61907 191 40L 51829 51254 191
68L 63334 62516 272 41L 52681 51863 272
69L 64967 63321 548 42L 54314 52668 548
70R 64994 65452 152 43R 54341 54799 152
71R 65483 66307 274 44R 54830 55654 274
72R 66404 67795 463 45R 55751 57142 463
73L 71185 67874 1103 46L 60532 57221 1103
74R 68472 68738 88 47R 57819 58085 88
75R 71239 71775 178 48R 60586 61122 178
76L 72715 71858 285 49L 62064 61207 285
77L 73747 72839 302 50L 63096 62188 302
- - - - 51L 62944 62282 220
78L+81La 76809 76246/73855 984 52L 66156 63202 984
82L 77592 76924 222 53L 66939 66271 222
83R 77672 79009 445 54R 67019 68356 445
84L 80193 79066 375 55L 69540 68413 375
85R 80251 80529 92 56R 69598 69876 92
86R 80591 81055 154 57R 69938 70402 154
87R 81385 82032 215 58R 70728 71375 215
88L 84187 82667 506 59L 73355 71835 506
89L 85420 84248 390 60L 74588 73416 390
90L 86627 85506 373 61L 75794 74673 373
91L 87886 86750 378 62L 77051 75915 378
92L 89216 88086 376 63L 78373 77240 377
93L 90497 89280 405 64L 79654 78437 405
95R 90635 91111 158 64.5L 80265 79792 157
96R 91148 91618 156 65R 80301 80771 156
97L 92774 91626 382 66L 81926 80778 382
98R 92428 93231 267 67R 81580 82383 267
99R 93244 93492 82 67.5R 82380 82646 88
101R 93753 94694 313 68R 82906 83847 313
102L 95007 94774 77 69L 84161 83928 77
103R 95092 95385 97 70R 84246 84539 97
104L 99252 95446 1268 71L 88406 84600 1268
105R 95498 95731 77 72R 84652 84885 77
107R 99308 100453 381 73R 88462 89088 208
111R 100766 101533 255 74R 89401 90168 255
112R 101588 102655 355 75R 90223 91326 367
114L 103050 102712 112 77.5L 91721 91383 112
115R 103122 103580 152 78R 91793 92251 152
116R 103700 104476 258 79R 92371 93147 258
117L 104733 104575 52 79.5L 93401 93241 52
118R 104795 105754 319 80R 93463 94422 319
119R 105799 106050 83 80.5R 94467 94718 83
120L 106525 106103 140 81L 95162 94779 127
121R 106615 106869 84 81.5R 95291 95547 84
122L 107599 106967 210 82L 96275 95643 210
123L 108740 107652 362 83L 97416 96328 362
124R 108863 109399 178 83.5L 98976 97684 130
125R 109474 110028 184 84R 98151 98705 184
126R 110101 110658 185 85R 98692 99330 212
127R 110731 111252 173 86R 99403 99924 173
128R 112041 115070 1009 87R 100788 103817 1009
129L 115490 115308 60 87.5L 104245 103884 119
131R 115749 116303 184 88R 104499 105053 184
132R 116321 117148 275 89R 105071 105898 275
134L 118498 117527 323 90L 107244 106273 323
135L 118885 118547 112 90.5L 107631 107258 123
136R 118946 119260 104 91R 107692 108006 104
137R 119282 120667 461 92R 108028 109413 461
138L 120907 120713 64 92.3L 109653 109457 64
139R 121013 121324 103 92.5R 109757 110068 103
140R+141Rb 121397 122311/124558 93R 110141 113554 1137
143L 124882 124643 79 94L 113878 113639 79
144R 124963 125421 152 95R 113959 114417 152
145R 125480 125977 165 96R 114476 114973 165
146L 127052 126078 324 97L 116050 115076 324
147L 128221 127187 344 98L 117220 116186 344
148R 128324 128803 159 99R 117323 117802 159
149R 128843 129220 125 99.5R 117842 118219 125
150L 130827 129301 508 100L 119826 118300 508
151L 131435 130848 195 101L 120434 119847 195
152R 131534 132772 412 102R 120533 121771 412
153L 132661 132089 190 103L 121660 121088 190
154R 132788 133081 97 103.5R 121787 122080 97
155R 133172 134899 575 104R 122172 123896 574
156L 135860 135048 270 105L 124852 124043 269
157R 135948 136472 174 106R 124940 125464 174
158L 136944 136528 138 106.5L 125936 125520 138
159R 137020 137511 163 106.7R 126012 126503 163
160L 137996 137508 162 107L 126988 126500 162
161.5L 138598 138309 95 107.5L 127561 127296 87
162L 139822 138674 382 108L 128797 127649 382
0.5L 1029 0/140141-140020 391 109L 130138 128963 391
1L 1971 1057 304 110L 131080 130166 304
3R 2018 3163 381 111R 131127 132272 381
4L 4332 3235 365 113L 133442 132345 365
5L 5542 4400 380 114L 134652 133510 380
6R 5570 6349 259 115R 134680 135453 257
7L 7339 6416 307 116L 136425 135520 301
8L 7886 7194 230 117L 136972 136280 230
9L 8444 7980 154 118L 137530 137066 154
10L 8888 8517 123 118.5L 137974 137603 123
11L 9132 8944 62 119L 138218 138030 62
12L 12293 9219 1024 120.5L 138307/139793 1/1540 1008

aORFs that have been added or altered are highlighted in bold. If a previously annotated ORF is not listed in the table, it has been deleted.

bPotentially frameshifted ORF

cWhere an ORF has a potential sequencing error resulting in a frameshift mutation, 2 stop codons are provided in the format X/Y. The first number represents the actual physical stop in the reported sequence. The second number is the proposed stop if a sequencing error occurred.

dLength of ORF in amino acids

As seen above, our comparative genomic approach was able to identify previously unannotated ORFs, homologous ORFs with potential frameshifts, and ORFs split between the two ends of a circular genome. Although this approach proved extremely successful for the Ranavirus and Megalocytivirus genera, we were unable to use it for the Chloriridovirus, Iridovirus, and Lymphocystivirus genera. This is due to the lack of co-linearity and the highly divergent sets of genes that exist between the members of these genera, as well as the low number of available genome sequences. However, we did modify the annotations of lymphocystis disease virus-China (LCDV-China) and invertebrate iridescent virus-6 (IIV-6). The previous annotations of these genomes of both species had contained a large number of overlapping ORFs [2,24], which we decided to exclude on several grounds. First, LCDV-China and IIV-6 are the only iridoviruses, out of the twelve so far sequenced, in which overlapping ORFs have been annotated. In addition, the original sequencing paper for IIV-6 [2] and a follow-up paper by the same group [25] did not include a number of the overlapping ORFs reported in the database sequence, presumably due to their small size and lack of similarity with other viral and cellular genes. Finally, there is no experimental or bioinformatics evidence to suggest that any of these ORFs encode proteins. Therefore, to improve the overall consistency of the Iridoviridae family annotations, we removed the small overlapping ORF annotations from the LCDV-China and IIV-6 genomic sequences (Table 5, Additional File 1 &2).

Table 5.

Overlapping ORFs deleted from the Iridovirus and Lymphocystivirus genera

Virus Deleted
LCDV-C 4L, 8R, 17R, 20L, 21L, 26L, 28L, 30L, 31L, 32L, 35R, 36R, 44R, 46L, 48L, 52R, 55L, 68L, 74R, 76R, 78R, 79R, 81R, 88R, 92R, 94R, 98R, 102R, 103R, 113L, 120R, 130L, 132L, 134L, 138R, 141R, 144L, 152L, 155L, 156L, 163L, 167R, 174L, 183L, 188L, 192L, 193L, 194L, 195L, 198R, 199L, 200R, 204R, 207L, 210L, 213L, 223R, 225R, 232R, 233L, 236L, 238R, 240L
IIV-6 1R, 2R, 3R, 4R, 5R, 7R, 8R, 11L, 13R, 14R, 15R, 16L, 17R, 18R, 20L, 21R, 23L, 24L, 25R, 26R, 27L, 28L, 31R, 33L, 35L, 36R, 38R, 39R, 40R, 46R, 47R, 48R, 51R 52R, 53R, 54R, 55R, 57L, 58L, 59R, 63R, 64L, 66L, 68L, 70R, 72R, 73R, 74R, 76L, 78R, 79L, 80L, 81L, 86R, 87R, 88L, 89L, 90R, 91R, 92R, 93R, 97L, 99L, 102R, 103R, 105R, 108R, 109R, 112R, 114L, 119R, 124L, 125L, 128L, 129R, 131L, 133R, 134L, 144R, 147L, 150R, 151R, 152R, 153L, 154R, 158R, 163L, 164R, 166L, 167L, 168R, 171R, 173R, 174R, 177L, 178L, 180L, 181L, 182L, 183L, 185L, 186L, 187R, 188L, 189L, 190R, 191L, 194R, 199L, 202L, 204L, 207L, 108L, 210L, 214L, 215R, 217L, 220L, 222R, 223L, 230L, 231R, 233L, 237R, 239R, 243R, 245R, 248R, 252L, 256R, 257R, 258R, 260R, 262R, 263L, 264R, 265L, 266L, 267R, 269R, 270R, 271R, 275R, 276L, 277R, 278L, 279R, 280R, 281R, 282R, 283L, 286L, 288R, 290R, 291R, 292L, 294R, 296R, 297L, 298R, 299R, 303R, 304R, 305L, 310R, 311R, 314L, 316R, 318R, 319L, 320L, 321R, 323L, 324L, 326L, 327R, 328L, 330L, 331R, 333L, 334R, 336R, 338L, 339L, 341R, 344R, 345R, 351R, 352R, 353L, 354L, 355R, 356L, 360R, 362R, 363L, 364L, 365L, 367L, 370R, 371R, 372R, 377R, 379L, 381L, 382R, 383L, 386R, 387R, 390R, 392R, 394R, 397L, 398R, 399R, 402L, 403L, 405L, 406R, 407R, 408R, 409R, 410L, 412L, 416R, 417L, 418R, 419L, 421L, 424R, 425R, 427R, 429R, 430R, 431L, 432R, 433R, 434L, 435R, 440R, 442L, 444R, 445L, 446L, 447L, 448L, 449L, 450L, 452R, 455L, 456R, 459L, 461R, 462R, 464R, 465R

Defining the conserved genes in Iridoviruses

As a result of this re-annotation of the Iridoviridae family, species within each genus now have a much greater consensus among their annotated ORFs. Prior to re-annotation, only 19 ORFs appeared to be conserved across all iridovirus species (Table 6). Although a previous report has suggested that 27 core genes exist within the Iridoviridae family [26], those core genes reported are found in most, but not all published iridoviridal species. In light of our previous results, we re-examined this core set of genes using the VOCs software. We identified seven novel core genes (Table 7), increasing the total number to 26 (Table 6 &7). This increase in the number of core genes was primarily due to the five new genes annotated during the re-analysis of RBIV (Table 7 bold highlighted genes). As expected most of the core genes are predicted to have essential functions, required for transcription, replication, and virus formation. Interestingly, three core genes, the orthologs of FV3 12L, 41R, and 94L, have no predicted functions. As previously stated Delhon et al. [26] identified 27 core genes, one more than we identified after our re-analysis. Delhon et al. [26] report the orthologs of FV3 20L represent a core [26]. However, our analysis shows that orthologs of FV3 20L exist in all genera except the Megalocytivirus (Figure 1) suggesting that FV3 20L is not a core gene. Future research to determine the functions of these genes, which are also likely to be essential, will provide important data for understanding the replication cycle of iridoviruses.

Table 6.

Iridoviridae Core Genes

Gene Namea FV3 TFV ATV SGIV GIV LCDV-1 LCDV-C ISKNV RBIV OSGIV IIV-6 MIV
1. Putative replication factor and/or DNA binding-packing 1R 105R 91R 116R 79R 162L 181R 61L 57L 60L 282R 79L
2. DNA-dep RNA pol-II Largest subunit 8R 8R 6R 104L 71L 16L 191R 28L 29L 31L 176R, 343L 90L
3. Putative NTPase I 9L 9L 7L 60R 36R 132L 075L 63L 59L 63L 22L 87L
4. ATPase-like protein 15R 16R 83R 134L 90L 54R 114L 122R 116R 119R 75L 88R
5. Helicase family 21L 21L 78R 54R 32R 6L 7L 56L 54L 57L 67R 4R
6. D5 family NTPase involved in DNA replication 22R 22R 77L 52L 31L 128L 80L 109L 101L 106L 184R 121R
7. Putative tyrosin kinase/lipopolysaccharide modifying enzyme 27R 29R 58R 78L+81Lb 52L 195R 173R 61L, 114L 57L, 106Lb 60L, 111L 179R, 439L 35R
8. NIF-NLI interacting factor 37R 40R 64R 61R 37R 82L 148L 5L 6L 6L 355R 104R
9. Unknown 41R 45R 69R 57L 35L 163R 235R 76L 72L 75L 295L 16R
10. Myristilated membrane protein 53R 55R 51L 88L 59L 67L 158R 7L 8L 8L 118L, 458R 6R
11. DNA pol Family B exonuclease 60R 63R 44L 128R 87R 135R 203L 19R 20R 22R 37L 120L
12. DNA-dep RNA pol-II second largest subunit 62L 65L 43R 73L 46L 25L 25R 34R 33R 36R 428L 9R
13. Ribonucleotide reductase small subunit 67L 71L 38R 47L 26L 27R 41L 24R 26R 27R 376L 48L
14. Ribonuclease III 80L 85L 25R 84L 55L 137R 187R 87R 83R 85R 142R 101R
15. Proliferating cell nuclear antigen 84R 90R 20L 68L 41L 3L 197L 112R 103Rb 109R 436L 60L
16. Major capsid protein 90R 96R 14L 72R 45R 147L 43L 6L 7L 7L 274R 14L
17. Putative XPPG-RAD2-type nuclease 95R 101R 10L 97L 66L 191R 169R 27L 28L 30L 369L 76L
18. Serine-threonine protein kinase 19R 19R 80L 39L 21L 10L 45R 55L 53L 56L 380R 10L
19. Serine-threonine protein kinase 57R 59R 47L 150L 100L 143L 178L 13R 13R 15R 98R 98L

The Iridoviridae core genes are shown.

aORFs that have been added or altered are highlighted in bold

bPotentially frameshifted ORF

Table 7.

Additional Iridoviridae Core Genes Identified After Genome Re-analysis

Newly Characterized Gene Namea FV3 TFV ATV SGIV GIV LCDV-1 LCDV-C ISKNV RBIV OSGIV IIV-6 MIV
1. Myristilated membrane protein 2L 2Lb 1L 19R 4R 160L 38R 90.5L 85L 88.5L 337L 47R
2. Unknown 12L 12L 87R 118R 80R 108L 100L 96L 89.5Lb 93L 287R 56L
3. Transcription elongation factor TFIIS 81R 86R 24L 85R 56R 171R 115R 29L 29.5Lb 32L 349L 55R
4. Deoxynucleoside kinase 85R 91.5R 19L 67L 40L 136R 027R 32R 31R 34R 143R 29R
5. Erv1/Alr family 88R 94R 16L 70R 43R 106L 142L 43L 43.5L 45L 347L 96R
6. Immediate early protein ICP-46 91R 97R 13L 162L 108L 47L 162R 115R 108.5R 112R 393L 39R
7. Hypothetical protein-Clostridium tetani 94L 100R 11L 98R 67R 19R 153L 86R 82.5R 84.5L 307L 33L

The Iridoviridae core genes are shown.

aORFs that have been added or altered are highlighted in bold

bPotentially frameshifted ORF

Figure 1.

Figure 1

Conserved Iridovirus Genes. Every Iridoviridae gene that has an ortholog in at least 2 Iridoviridae genera are shown. Orthologs share the same row on the table. The genes within each genus are color-coded for easier identification. As long as at least one member of the genus contains an ortholog, the entire genus is highlighted. Where multiple ORFs are listed for a particular gene name, the ORFs represent multiple orthologs of the gene in that viral species. The remainder of the figure showing just the genes conserved between the Iridovirus and Chloriridovirus genera are included in Additional File 3.

Identifying genes conserved between some, but not all, iridovirus species can give us important information when investigating evolutionary relationships within the family. A number of past phylogenetic analyses of Iridoviridae have used phylogenic trees constructed from aligned protein sequences [1,18-20,22,24,27]. However, there are potential problems with phylogenic analysis based on comparisons of single genes. This type of analysis is rarely consistent due to horizontal gene transfer [28] and variable rates of evolution [29]. Therefore, we decided to take a whole genome comparative phylogenetic analysis to understand the relationship between iridoviruses. Our approach was to identify all the genes conserved between different genera to gain a better understanding of the relationships within the iridovirus family. This approach yields an indication of how similar in gene content 2 genomes are. Our whole-genome comparative analysis, grouped orthologous genes between genera (Figures 1 &2 and Additional File 3), and was consistent with phylogenic trees constructed from single protein sequences. Based on gene conservation, the Ranavirus and Lymphocystivirus genera appear to be most closely related to one another (Figure 2). In addition, the Iridovirus and Chloriridovirus genera are also closely related to one another based on presence of orthologous genes (Figure 2). In contrast, the Megalocytivirus genus and the Iridovirus/Chloriridovirus genera are equally divergent from each other as well as all other Iridoviridae family members (Figure 2).

Figure 2.

Figure 2

Phylogenetic relationships between the five iridovirus genera based on gene content. Individual viral species were compared within a genus to identify the number of orthologous genes. Orthologous genes between viral genera were then determined. The numbers on each line identify the number of orthologous genes shared between viral species or genera including the 26 core genes. The Iridovirus and Chloriridovirus genera have a high degree of gene conservation and a combined genera box (Iridovirus/Chloriridovirus) was used to compare orthologous genes between genera. In addition, two subgroups of the Ranavirus genus are shown. Each subgroup contains a virtually identical complement of genes. However, a comparison between the FV3/TFV/ATV subgroup with the SGIV/GIV subgroup revealed 72 orthologous genes.

As the list of sequenced iridovirus genomes grows, the non-co-linearity between many of these genomes becomes more apparent. The Megalocytivirus and Ranavirus, but not the Chloriridovirus, Iridovirus, and Lymphocystivirus genera, show a co-linear arrangement of genes within each genus. However, comparisons of genomic sequences from different genera suggest no co-linearity. This trend may be the result of the high recombination rates [30] seen in some iridovirus members [31]. For example, within the Ranavirus genus, ATV has two inversions relative to the FV3 and TFV sequences [30], reducing the co-linearity of these genomes to some degree. Figure 3A shows how two recombination events could convert FV3 to the ATV arrangement of genes. In contrast, a comparison between the more distantly related members within the Ranavirus genus (such as FV3 and GIV) demonstrate a much more dramatic loss of co-linearity. No long stretches of co-linear genes exist between these sequences, although small sections of co-linearity remain as seen through a dotplot analysis between FV3 and GIV (Figure 3B). The dotplot shows small regions of co-linearity scattered throughout the genome of FV3 and GIV as seen by short diagonal lines on the dotplot (Figure 3B). A schematic representation of the co-linearity between FV3 and GIV demonstrates that co-linearity occurs in small clusters of genes often only 2–4 genes in length (Figure 3C).

Figure 3.

Figure 3

Co-linearity found within the Ranavirus genus. (A) FV3 and ATV, both members of the Ranavirus genus possess almost complete co-linearity of orthologous genes as visualized by a dotplot. However, 2 inversions have occurred. The FV3 genes 10–52 and 77–88 have switched genomic locations as shown, potentially through two recombination events. The inversion has also resulted in the loss of the ortholog of FV3 9L in ATV. (B) There is a limited amount of co-linearity found between FV3/TFV/ATV and SGIV/GIV. The co-linearity has been visualized using a dotplot analysis between FV3 (horizontal sequence) and GIV (vertical sequence). Genes are colored either red or blue representing right- or left-ward transcription respectively. (C) The co-linearity between FV3 and GIV is generally composed of stretches of 2 or 3 co-linear orthologous genes. Orthologous genes, in a co-linear arrangement are schematically shown as blocks of the same color on either FV3 or GIV genomic sequence.

Conclusion

The Iridoviridae family can cause severe diseases resulting in significant economic and environmental losses. Very little is known about how iridoviruses cause disease in their host. Our re-analysis of genomes within the Iridoviridae family provides a unifying framework to understand the biology of these viruses. For example, the re-analysis of the Iridoviridae family has increased the consistency of annotated sequences from viruses within the same genus. In addition, the re-analysis has helped create a much greater consensus among Iridoviridae family members and enhanced our understanding of this virus family as a whole. The updated annotations that we have produced for the iridovirus sequences can be found in the additional files to this paper; in addition, the databases and tools to analyse Iridoviridae genomes are available to all researchers [32]. This database will contain genomes from the original GenBank files and also the edited genomes described in this paper. Further re-defining the core set of iridovirus genes will continue to lead us to a better understanding of the phylogenetic relationships between individual iridoviruses as well as giving us a much deeper understanding of iridovirus replication. In addition, this analysis will provide a better framework for characterizing and annotating currently unclassified iridoviruses.

Methods

Re-annotation of the iridoviridae

Annotated sequences for the twelve completely sequenced iridovirus genomes (Table 1) were obtained from GenBank files and imported into the Viral Orthologous Clusters (VOCs) database [15]. Species from the same genus were examined using VOCs to identify all of the orthologous genes. The analysis then focused on the differences found between genomes within the same genus. For those genomes that contained co-linear arrangements of genes (those in the Ranavirus and Megalocytivirus genera), we compared those regions containing annotated ORFs. If more than two sequenced genomes were available for a given genus, and the ORF was present in at least two of the genomes, then we set out to determine if that ORF was also present in the remainder of the genomes. By this method, we were able to re-annotate small segments of each genome without needing to re-analyse the entire genome. The Viral Genome Organizer (VGO) software [16] was used to visualize the annotated ORFs, as well as the start and stop codons found within each genome.

Analysis of orthologous genes

We used a combination of BLAST searches and queries using the VOCs software [32] to define orthologous genes between Iridoviridae genera. VOCs is a JAVA client-server that accesses a sequence query language (SQL) database containing iridovirus genomes. This SQL database permits complex queries to be assembled in an easy to use graphical user interface. VOCs initially groups orthologous genes into families based on BLASTP scores, these can be manually checked and altered if necessary.

Dotplot analysis

Dotplots of FV3 and GIV were done using JDotter [33]. JDotter provides an interactive input window that links JDotter to the VOCs database. The sequences for the FV3 and GIV were obtained through the VOCs database.

Competing interests

The author(s) declare that there are no competing interests.

Authors' contributions

HEE, JM, EP, and CRB carried out the analysis of the Iridoviridae family and generated the tables and figures. VTJ and CU generated the databases and tools to carry out the analysis done in the manuscript. CRB and CU conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Supplementary Material

Additional File 1

Revised annotation of the Lymphocystivirus genus. The table highlights the changes made to the Lymphocystivirus genus.

Click here for file (209.5KB, doc)
Additional File 2

Analysis of the Iridovirus and Chloriridovirus genera. The table highlights the changes made to the Iridovirus and Chloriridovirus genera.

Click here for file (315KB, doc)
Additional File 3

Additional Conserved Genes Between Iridovirus & Chloriridovirus genera. The table is an extension of Figure 1 – showing the genes that are conserved just between the Iridovirus and Chloriridovirus genera.

Click here for file (34KB, doc)

Acknowledgments

Acknowledgements

We would like to thank Daniel Rock for sharing information about mosquito iridescent virus prior to publication and Cristalle Watson for critically reviewing the manuscript. This work was supported by Discovery Grants (Natural Science and Engineering Research Council (NSERC) of Canada) to C.R.B. and C.U. H.E.E. is the recipient of an NSERC postgraduate scholarship.

Contributor Information

Heather E Eaton, Email: heathereaton@trentu.ca.

Julie Metcalf, Email: juliem@cogeco.ca.

Emily Penny, Email: emilypenny@trentu.ca.

Vasily Tcherepanov, Email: vasilyt@uvic.ca.

Chris Upton, Email: cupton@uvic.ca.

Craig R Brunetti, Email: craigbrunetti@trentu.ca.

References

  1. He JG, Lu L, Deng M, He HH, Weng SP, Wang XH, Zhou SY, Long QX, Wang XZ, Chan SM. Sequence analysis of the complete genome of an iridovirus isolated from the tiger frog. Virology. 2002;292:185–197. doi: 10.1006/viro.2001.1245. [DOI] [PubMed] [Google Scholar]
  2. Jakob NJ, Muller K, Bahr U, Darai G. Analysis of the first complete DNA sequence of an invertebrate iridovirus: coding strategy of the genome of Chilo iridescent virus. Virology. 2001;286:182–196. doi: 10.1006/viro.2001.0963. [DOI] [PubMed] [Google Scholar]
  3. Williams T, Chinchar VG, Darai G, Hyatt A, Kalmakoff J, Seligy V. Iridoviridae. In: van Regenmortel MHV, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB, editor. Virus Taxonomy: The Classification and Nomenclature of Viruses. Seventh report of the International Committee on the Taxonomy of Viruses; 2000. pp. 167–182. [Google Scholar]
  4. Williams T. The iridoviruses. Adv Virus Res. 1996;46:345–412. doi: 10.1016/s0065-3527(08)60076-7. [DOI] [PubMed] [Google Scholar]
  5. Ahne W, Schlotfeldt HJ, Thomsen I. Fish viruses: isolation of an icosahedral cytoplasmic deoxyribovirus from sheatfish (Silurus glanis) J Vet Med. 1989;36:333–336. doi: 10.1111/j.1439-0450.1989.tb00611.x. [DOI] [PubMed] [Google Scholar]
  6. Hedrick RP, McDowell TS. Properties of iridoviruses from ornamental fish. Vet Res. 1995;26:423–427. [PubMed] [Google Scholar]
  7. Hedrick RP, McDowell TS, Ahne W, Torhy C, De Kinkelin P. Properties of three iridovirus-like agents associated with systemic infections of fish. Dis Aquat Org. 1992;13:203–209. [Google Scholar]
  8. Langdon JS, Humphrey JD, Williams LM, Hyatt AD, Westbury HA. First virus isolation from Australian fish: an iridovirus-like pathogen from redfin perch Perca fluviatilis. J Fish Dis. 1986;9:263–268. doi: 10.1111/j.1365-2761.1986.tb01011.x. [DOI] [Google Scholar]
  9. Pozet F, Morand M, Moussa A, Torhy C, De Kinkelin P. Isolation and preliminary characterization of a pathogenic icosahedral deoxyribovirus from the catfish Ictalurus melas. Dis Aquat Org. 1992;14:35–42. [Google Scholar]
  10. Bollinger TK, Mao J, Schock D, Brigham RM, Chinchar VG. Pathology, isolation, and preliminary molecular characterization of a novel iridovirus from tiger salamanders in Saskatchewan. J Wildlife Disease. 1999;35 doi: 10.7589/0090-3558-35.3.413. [DOI] [PubMed] [Google Scholar]
  11. Jancovich JK, Davidson EW, Seiler A, Jacobs BL, Collins JP. Transmission of the Ambystoma tigrinum virus to alternate hosts. Dis Aquat Organ. 2001;46:159–163. doi: 10.3354/dao046159. [DOI] [PubMed] [Google Scholar]
  12. Collins JP, Brunner JL, Miera V, Parris MJ, Schock DM, Storfer A. Ecology and evolution of infectious disease. In: Semlitsch R, editor. Amphibian Conservation. Washington , Smithsonian Institution Press; 2003. pp. 137–151. [Google Scholar]
  13. Daszak P, Cunningham AA, Hyatt AD. Infectious disease and amphibian population declines. Divers Distrib. 2003;9:141–150. doi: 10.1046/j.1472-4642.2003.00016.x. [DOI] [Google Scholar]
  14. Jancovich JK, Davidson EW, Parameswaran N, Mao J, Chinchar VG, Collins JP, Jacobs BL, Storfer A. Evidence for emergence of an amphibian iridoviral disease because of human-enhanced spread. Molecular Ecology. 2005;14:213–224. doi: 10.1111/j.1365-294X.2004.02387.x. [DOI] [PubMed] [Google Scholar]
  15. Ehlers A, Osborne J, Slack S, Roper RL, Upton C. Poxirus orthologous clusters (POCs) Bioinformatics. 2002;18:1544–1545. doi: 10.1093/bioinformatics/18.11.1544. [DOI] [PubMed] [Google Scholar]
  16. Upton C, Hogg D, Perrin D, Boone M, Harris NL. Viral genome organizer: a system for analyzing complete viral genomes. Virus Research. 2000;70:55–64. doi: 10.1016/S0168-1702(00)00210-0. [DOI] [PubMed] [Google Scholar]
  17. Brunetti CR, Amano H, Ueda Y, Qin J, Miyamura T, Suzuki T, Li X, Barrett JW, McFadden G. Complete genomic sequence and comparative analysis of the tumorigenic poxvirus Yaba monkey tumor virus. Journal of Virology. 2003;77:13335–13347. doi: 10.1128/JVI.77.24.13335-13347.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lu L, Zhou SY, Chen C, Weng SP, Chan SM, He JG. Complete genome sequence analysis of an iridovirus isolated from the orange-spotted grouper, Epinephelus coicodes. Virology. 2005;339:81–100. doi: 10.1016/j.virol.2005.05.021. [DOI] [PubMed] [Google Scholar]
  19. Do JW, Moon CH, Kim HJ, Ko MS, Kim SB, Son JH, Kim JS, An EJ, Kim MK, Lee SK, Han MS, Cha SJ, Park MS, Park MA, Kim YC, Kim JW, Park JW. Complete genomic DNA sequence of rock bream iridovirus. Virology. 2004;325:351–363. doi: 10.1016/j.virol.2004.05.008. [DOI] [PubMed] [Google Scholar]
  20. He JG, Deng M, Weng SP, Li Z, Zhou SY, Long QX, Wang XZ, Chan SM. Complete genome analysis of Mandarin fish infectious spleen and kidney necrosis iridovirus. Virology. 2001;291:126–139. doi: 10.1006/viro.2001.1208. [DOI] [PubMed] [Google Scholar]
  21. Tsai CT, Ting JW, Wu MH, Wu MF, Guo IC, Chang CY. Complete genomic sequence of the grouper iridovirus and comparison of genomic organization with those of other iridoviruses. Journal of Virology. 2005;79:2010–2023. doi: 10.1128/JVI.79.4.2010-2023.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Song WJ, Qin QW, Qiu J, Huang CH, Wang F, C.L. H. Functional genomics analysis of Singapore grouper iridovirus: complete sequence determination and proteomic analysis. Journal of Virology. 2004;78:12576–12590. doi: 10.1128/JVI.78.22.12576-12590.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Goorha R, Murti KG. The genome of frog virus 3, an animal DNA virus, is circularly permuted and terminally redundant. Proc Natl Acad Sci USA. 1982;79:248–252. doi: 10.1073/pnas.79.2.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zhang QY, Xiao F, Xie J, Li ZQ, Gui JF. Complete genome sequence of lymphocystis disease virus isolated from China. Journal of Virology. 2004;78:6982–6994. doi: 10.1128/JVI.78.13.6982-6994.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jakob NJ, Kleespies RG, Tidona CA, Muller K, Gelderblom HR, Darai G. Comparative analysis of the genome and host range characteristics of two insect iridoviruses: Chilo iridescent virus and a cricket iridovirus isolate. Journal of General Virology. 2002;83:463–470. doi: 10.1099/0022-1317-83-2-463. [DOI] [PubMed] [Google Scholar]
  26. Delhon G, Tulman ER, Afonso CL, Lu Z, Becnel JJ, Moser BA, Kutish GF, Rock DL. Genome of invertebrate iridescence virus type 3 (Mosquito iridescent virus) Journal of Virology. 2006;80:8439–8449. doi: 10.1128/JVI.00464-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tan WGH, Barkman TJ, Chinchar VG, Essani K. Comparative genomic analyses of frog virus 3, type species of the genus Ranavirus (family Iridoviridae) Virology. 2004;323:70–84. doi: 10.1016/j.virol.2004.02.019. [DOI] [PubMed] [Google Scholar]
  28. Doolittle WF, Logsdon JM. Archaeal genomics: Do Archaea have a mixed heritage? Current Biology. 1998;8:R209–R211. doi: 10.1016/S0960-9822(98)70127-7. [DOI] [PubMed] [Google Scholar]
  29. Huynen MA, Bork P. Measuring genome evolution. Proc Natl Acad Sci USA. 1998;95:5849–5856. doi: 10.1073/pnas.95.11.5849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Jancovich JK, Mao J, Chinchar VG, Wyatt C, Case ST, Kumar S, Valente G, Subramanian S, Davidson EW, Collins JP, Jacobs BL. Genomic sequence of a ranavirus (family Iridoviridae) associated with salamander mortalities in North America. Virology. 2003;316:90–103. doi: 10.1016/j.virol.2003.08.001. [DOI] [PubMed] [Google Scholar]
  31. Chinchar VG, Granoff A. Temperature-sensitive mutants of frog virus 3: biochemical and genetic characterization. Journal of Virology. 1986;58:192–202. doi: 10.1128/jvi.58.1.192-202.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Viral Bioinformatics Resource Center [www.virology.ca]
  33. Brodie R, Roper RL, Upton C. JDotter: a Java interface to multiple dotplots generated by dotter. Bioinformatics. 2004;20:279–281. doi: 10.1093/bioinformatics/btg406. [DOI] [PubMed] [Google Scholar]
  34. Tidona CA, Darai G. The complete DNA sequence of lymphocystis disease virus. Virology. 1997;230:207–216. doi: 10.1006/viro.1997.8456. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Additional File 1

Revised annotation of the Lymphocystivirus genus. The table highlights the changes made to the Lymphocystivirus genus.

Click here for file (209.5KB, doc)
Additional File 2

Analysis of the Iridovirus and Chloriridovirus genera. The table highlights the changes made to the Iridovirus and Chloriridovirus genera.

Click here for file (315KB, doc)
Additional File 3

Additional Conserved Genes Between Iridovirus & Chloriridovirus genera. The table is an extension of Figure 1 – showing the genes that are conserved just between the Iridovirus and Chloriridovirus genera.

Click here for file (34KB, doc)

Articles from Virology Journal are provided here courtesy of BMC

RESOURCES