Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Sep;178(18):5550–5554. doi: 10.1128/jb.178.18.5550-5554.1996

The uvrB gene of Pseudomonas aeruginosa is not DNA damage inducible.

E Rivera 1, L Vila 1, J Barbé 1
PMCID: PMC178385  PMID: 8808952

Abstract

The uvrB gene of Pseudomonas aeruginosa has been isolated from a genomic library by complementation of an Escherichia coli uvrB mutant. The complete nucleotide sequence of P. aeruginosa uvrB consists of 2,013 bp, encoding a polypeptide of 670 amino acids. A P. aeruginosa SOS consensus region, which functions as a binding site for the LexA repressor molecule, is not present in the upstream region of the uvrB gene isolated. By transcriptional fusions with a reporter gene, it has been demonstrated that, contrary to what happens with the homologous gene of E. coli, the P. aeruginosa uvrB gene is not DNA damage inducible. Nevertheless, the UvrB protein must be functional in P. aeruginosa cells because a uvrB-defective mutant is extremely sensitive to UV radiation.

Full Text

The Full Text of this article is available as a PDF (233.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Calero S., Garriga X., Barbé J. Analysis of the DNA damage-mediated induction of Pseudomonas putida and Pseudomonas aeruginosa lexA genes. FEMS Microbiol Lett. 1993 Jun 1;110(1):65–70. doi: 10.1111/j.1574-6968.1993.tb06296.x. [DOI] [PubMed] [Google Scholar]
  2. Fellay R., Frey J., Krisch H. Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria. Gene. 1987;52(2-3):147–154. doi: 10.1016/0378-1119(87)90041-2. [DOI] [PubMed] [Google Scholar]
  3. Garriga X., Calero S., Barbé J. Nucleotide sequence analysis and comparison of the lexA genes from Salmonella typhimurium, Erwinia carotovora, Pseudomonas aeruginosa and Pseudomonas putida. Mol Gen Genet. 1992 Dec;236(1):125–134. doi: 10.1007/BF00279651. [DOI] [PubMed] [Google Scholar]
  4. Horn J. M., Ohman D. E. Autogenous regulation and kinetics of induction of Pseudomonas aeruginosa recA transcription as analyzed with operon fusions. J Bacteriol. 1988 Oct;170(10):4699–4705. doi: 10.1128/jb.170.10.4699-4705.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jordan A., Aragall E., Gibert I., Barbe J. Promoter identification and expression analysis of Salmonella typhimurium and Escherichia coli nrdEF operons encoding one of two class I ribonucleotide reductases present in both bacteria. Mol Microbiol. 1996 Feb;19(4):777–790. doi: 10.1046/j.1365-2958.1996.424950.x. [DOI] [PubMed] [Google Scholar]
  6. Lieberman H. B., Witkin E. M. DNA degradation, UV sensitivity and SOS-mediated mutagenesis in strains of Escherichia coli deficient in single-strand DNA binding protein: effects of mutations and treatments that alter levels of Exonuclease V or recA protein. Mol Gen Genet. 1983;190(1):92–100. doi: 10.1007/BF00330329. [DOI] [PubMed] [Google Scholar]
  7. Little C. A., Tweats D. J., Pinney R. J. Plasmid pGW16, a derivative of pKM101, increases post-UV DNA synthesis, but sensitises some strains of Escherichia coli to UV. Mutat Res. 1991 Jul;249(1):177–187. doi: 10.1016/0027-5107(91)90144-d. [DOI] [PubMed] [Google Scholar]
  8. Little J. W., Edmiston S. H., Pacelli L. Z., Mount D. W. Cleavage of the Escherichia coli lexA protein by the recA protease. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3225–3229. doi: 10.1073/pnas.77.6.3225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Matsui H., Sano Y., Ishihara H., Shinomiya T. Regulation of pyocin genes in Pseudomonas aeruginosa by positive (prtN) and negative (prtR) regulatory genes. J Bacteriol. 1993 Mar;175(5):1257–1263. doi: 10.1128/jb.175.5.1257-1263.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McBeth D. L. Effect of degradative plasmid CAM-OCT on responses of Pseudomonas bacteria to UV light. J Bacteriol. 1989 Feb;171(2):975–982. doi: 10.1128/jb.171.2.975-982.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Miller R. V., Kokjohn T. A. General microbiology of recA: environmental and evolutionary significance. Annu Rev Microbiol. 1990;44:365–394. doi: 10.1146/annurev.mi.44.100190.002053. [DOI] [PubMed] [Google Scholar]
  12. Riera J., Fernández de Henestrosa A. R., Garriga X., Tapias A., Barbé J. Interspecies regulation of the recA gene of gram-negative bacteria lacking an E. coli-like SOS operator. Mol Gen Genet. 1994 Nov 15;245(4):523–527. doi: 10.1007/BF00302266. [DOI] [PubMed] [Google Scholar]
  13. Sancar A., Rupp W. D. Cloning of uvrA, lexC and ssb genes of Escherichia coli. Biochem Biophys Res Commun. 1979 Sep 12;90(1):123–129. doi: 10.1016/0006-291x(79)91598-5. [DOI] [PubMed] [Google Scholar]
  14. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sano Y., Kageyama M. The sequence and function of the recA gene and its protein in Pseudomonas aeruginosa PAO. Mol Gen Genet. 1987 Jul;208(3):412–419. doi: 10.1007/BF00328132. [DOI] [PubMed] [Google Scholar]
  16. Sassanfar M., Roberts J. W. Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J Mol Biol. 1990 Mar 5;212(1):79–96. doi: 10.1016/0022-2836(90)90306-7. [DOI] [PubMed] [Google Scholar]
  17. Simonson C. S., Kokjohn T. A., Miller R. V. Inducible UV repair potential of Pseudomonas aeruginosa PAO. J Gen Microbiol. 1990 Jul;136(7):1241–1249. doi: 10.1099/00221287-136-7-1241. [DOI] [PubMed] [Google Scholar]
  18. Van Haute E., Joos H., Maes M., Warren G., Van Montagu M., Schell J. Intergeneric transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of the Ti plasmids of Agrobacterium tumefaciens. EMBO J. 1983;2(3):411–417. doi: 10.1002/j.1460-2075.1983.tb01438.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Walker G. C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev. 1984 Mar;48(1):60–93. doi: 10.1128/mr.48.1.60-93.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Warner-Bartnicki A. L., Miller R. V. Characterization of stress-responsive behavior in Pseudomonas aeruginosa PAO: isolation of Tn3-lacZYA fusions with novel damage-inducible (din) promoters. J Bacteriol. 1992 Mar;174(6):1862–1868. doi: 10.1128/jb.174.6.1862-1868.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol. 1990 Nov;172(11):6568–6572. doi: 10.1128/jb.172.11.6568-6572.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES