Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Oct;178(19):5602–5609. doi: 10.1128/jb.178.19.5602-5609.1996

Evidence that an N-terminal S-layer protein fragment triggers the release of a cell-associated high-molecular-weight amylase in Bacillus stearothermophilus ATCC 12980.

E M Egelseer 1, I Schocher 1, U B Sleytr 1, M Sára 1
PMCID: PMC178397  PMID: 8824603

Abstract

During growth on starch medium, the S-layer-carrying Bacillus stearothermophilus ATCC 12980 and an S-layer-deficient variant each secreted three amylases, with identical molecular weights of 58,000, 122,000, and 184,000, into the culture fluid. Only the high-molecular-weight amylase (hmwA) was also identified as cell associated. Extraction and reassociation experiments showed that the hmwA had a high-level affinity to the peptidoglycan-containing layer and to the S-layer surface, but the interactions with the peptidoglycan-containing layer were stronger than those with the S-layer surface. For the S-layer-deficient variant, no changes in the amount of cell-associated and free hmwA could be observed during growth on starch medium, while for the S-layer-carrying strain, cell association of the hmwA strongly depended on the growth phase of the cells. The maximum amount of cell-associated hmwA was observed 3 h after inoculation, which corresponded to early exponential growth. The steady decrease in cell-associated hmwA during continued growth correlated with the appearance and the increasing intensity of a protein with an apparent molecular weight of 60,000 on sodium dodecyl sulfate gels. This protein had a high-level affinity to the peptidoglycan-containing layer and was identified as an N-terminal S-layer protein fragment which did not result from proteolytic cleavage of the whole S-layer protein but seems to be a truncated copy of the S-layer protein which is coexpressed with the hmwA under certain culture conditions. During growth on starch medium, the N-terminal S-layer protein fragment was integrated into the S-layer lattice, which led to the loss of its regular structure over a wide range and to the loss of amylase binding sites. Results obtained in the present study provide evidence that the N-terminal part of the S-layer protein is responsible for the anchoring of the subunits to the peptidoglycan-containing layer, while the surface-located C-terminal half could function as a binding site for the hmwA.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beveridge T. J., Graham L. L. Surface layers of bacteria. Microbiol Rev. 1991 Dec;55(4):684–705. doi: 10.1128/mr.55.4.684-705.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breitwieser A., Gruber K., Sleytr U. B. Evidence for an S-layer protein pool in the peptidoglycan of Bacillus stearothermophilus. J Bacteriol. 1992 Dec;174(24):8008–8015. doi: 10.1128/jb.174.24.8008-8015.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Egelseer E., Schocher I., Sára M., Sleytr U. B. The S-layer from Bacillus stearothermophilus DSM 2358 functions as an adhesion site for a high-molecular-weight amylase. J Bacteriol. 1995 Mar;177(6):1444–1451. doi: 10.1128/jb.177.6.1444-1451.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Engel A. M., Cejka Z., Lupas A., Lottspeich F., Baumeister W. Isolation and cloning of Omp alpha, a coiled-coil protein spanning the periplasmic space of the ancestral eubacterium Thermotoga maritima. EMBO J. 1992 Dec;11(12):4369–4378. doi: 10.1002/j.1460-2075.1992.tb05537.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fujino T., Béguin P., Aubert J. P. Organization of a Clostridium thermocellum gene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in attachment of the cellulosome to the cell surface. J Bacteriol. 1993 Apr;175(7):1891–1899. doi: 10.1128/jb.175.7.1891-1899.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Graham L. L., Beveridge T. J., Nanninga N. Periplasmic space and the concept of the periplasm. Trends Biochem Sci. 1991 Sep;16(9):328–329. doi: 10.1016/0968-0004(91)90135-i. [DOI] [PubMed] [Google Scholar]
  7. Hastie A. T., Brinton C. C., Jr Specific interaction of the tetragonally arrayed protein layer of Bacillus sphaericus with its peptidoglycan sacculus. J Bacteriol. 1979 Jun;138(3):1010–1021. doi: 10.1128/jb.138.3.1010-1021.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lacks S. A., Springhorn S. S. Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. J Biol Chem. 1980 Aug 10;255(15):7467–7473. [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Lemaire M., Ohayon H., Gounon P., Fujino T., Béguin P. OlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelope. J Bacteriol. 1995 May;177(9):2451–2459. doi: 10.1128/jb.177.9.2451-2459.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lupas A., Engelhardt H., Peters J., Santarius U., Volker S., Baumeister W. Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J Bacteriol. 1994 Mar;176(5):1224–1233. doi: 10.1128/jb.176.5.1224-1233.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Matuschek M., Burchhardt G., Sahm K., Bahl H. Pullulanase of Thermoanaerobacterium thermosulfurigenes EM1 (Clostridium thermosulfurogenes): molecular analysis of the gene, composite structure of the enzyme, and a common model for its attachment to the cell surface. J Bacteriol. 1994 Jun;176(11):3295–3302. doi: 10.1128/jb.176.11.3295-3302.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Messner P., Sleytr U. B. Crystalline bacterial cell-surface layers. Adv Microb Physiol. 1992;33:213–275. doi: 10.1016/s0065-2911(08)60218-0. [DOI] [PubMed] [Google Scholar]
  14. Salamitou S., Lemaire M., Fujino T., Ohayon H., Gounon P., Béguin P., Aubert J. P. Subcellular localization of Clostridium thermocellum ORF3p, a protein carrying a receptor for the docking sequence borne by the catalytic components of the cellulosome. J Bacteriol. 1994 May;176(10):2828–2834. doi: 10.1128/jb.176.10.2828-2834.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Salamitou S., Raynaud O., Lemaire M., Coughlan M., Béguin P., Aubert J. P. Recognition specificity of the duplicated segments present in Clostridium thermocellum endoglucanase CelD and in the cellulosome-integrating protein CipA. J Bacteriol. 1994 May;176(10):2822–2827. doi: 10.1128/jb.176.10.2822-2827.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sleytr U. B., Messner P., Pum D., Sára M. Crystalline bacterial cell surface layers. Mol Microbiol. 1993 Dec;10(5):911–916. doi: 10.1111/j.1365-2958.1993.tb00962.x. [DOI] [PubMed] [Google Scholar]
  17. Sleytr U. B. Self-assembly of the hexagonally and tetragonally arranged subunits of bacterial surface layers and their reattachment to cell walls. J Ultrastruct Res. 1976 Jun;55(3):360–377. doi: 10.1016/s0022-5320(76)80093-7. [DOI] [PubMed] [Google Scholar]
  18. Specka U., Spreinat A., Antranikian G., Mayer F. Immunocytochemical Identification and Localization of Active and Inactive alpha-Amylase and Pullulanase in Cells of Clostridium thermosulfurogenes EM1. Appl Environ Microbiol. 1991 Apr;57(4):1062–1069. doi: 10.1128/aem.57.4.1062-1069.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sára M., Kuen B., Mayer H. F., Mandl F., Schuster K. C., Sleytr U. B. Dynamics in oxygen-induced changes in S-layer protein synthesis from Bacillus stearothermophilus PV72 and the S-layer-deficient variant T5 in continuous culture and studies of the cell wall composition. J Bacteriol. 1996 Apr;178(7):2108–2117. doi: 10.1128/jb.178.7.2108-2117.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Takekawa S., Uozumi N., Tsukagoshi N., Udaka S. Proteases involved in generation of beta- and alpha-amylases from a large amylase precursor in Bacillus polymyxa. J Bacteriol. 1991 Nov;173(21):6820–6825. doi: 10.1128/jb.173.21.6820-6825.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yang L. Y., Pei Z. H., Fujimoto S., Blaser M. J. Reattachment of surface array proteins to Campylobacter fetus cells. J Bacteriol. 1992 Feb;174(4):1258–1267. doi: 10.1128/jb.174.4.1258-1267.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES