Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Oct;178(19):5610–5614. doi: 10.1128/jb.178.19.5610-5614.1996

Mutation and Mutagenesis of thiol peroxidase of Escherichia coli and a new type of thiol peroxidase family.

M K Cha 1, H K Kim 1, I H Kim 1
PMCID: PMC178398  PMID: 8824604

Abstract

A novel thioredoxin-linked thiol peroxidase (Px) from Escherichia coli has been reported previously (M. K. Cha, H. K. Kim, and I. H. Kim, J. Biol. Chem. 270:28635-28641, 1995). In an attempt to perform physiological and biochemical characterizations of the thiol Px, a thiol Px null (tpx) mutant and a functional-residue mutant of thiol Px were produced. The tpx mutant was viable in aerobic culture but grew more slowly than the wild-type cells. The difference in growth rate became more pronounced when oxidative-stress-inducing reagents, such as peroxides and paraquat, were added to the cultures. The viability of the individual tpx mutant under oxidative stress was much lower than that of wild-type cells. tpx mutants growing aerobically respond to paraquat with a sixfold greater induction of Mn-superoxide dismutase than that of the wild-type cells. The deduced amino acid sequence of the thiol Px was found to be from 42 to 72% identical to the sequences of proteins from Haemophilus influenzae (ToxR regulon), Vibrio cholerae (ToxR regulon), and three kinds of streptococci (coaggregation-mediating adhesins), suggesting that they all belong to a new thiol Px family. Alignment of the amino acid sequences of the thiol Px family members showed that one cysteine, which corresponds to Cys-94 in E. coli thiol Px, is perfectly conserved. The substitution of serine for this cysteine residue resulted in complete loss of Px activity. These results suggest that the members of the thiol Px family, including E. coli thiol Px, have a functional cysteine residue and function in vivo as peroxidases.

Full Text

The Full Text of this article is available as a PDF (747.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beyer W. F., Jr, Fridovich I. In vivo competition between iron and manganese for occupancy of the active site region of the manganese-superoxide dismutase of Escherichia coli. J Biol Chem. 1991 Jan 5;266(1):303–308. [PubMed] [Google Scholar]
  2. Cha M. K., Kim H. K., Kim I. H. Thioredoxin-linked "thiol peroxidase" from periplasmic space of Escherichia coli. J Biol Chem. 1995 Dec 1;270(48):28635–28641. doi: 10.1074/jbc.270.48.28635. [DOI] [PubMed] [Google Scholar]
  3. Chae H. Z., Chung S. J., Rhee S. G. Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem. 1994 Nov 4;269(44):27670–27678. [PubMed] [Google Scholar]
  4. Chae H. Z., Uhm T. B., Rhee S. G. Dimerization of thiol-specific antioxidant and the essential role of cysteine 47. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7022–7026. doi: 10.1073/pnas.91.15.7022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DiRita V. J., Parsot C., Jander G., Mekalanos J. J. Regulatory cascade controls virulence in Vibrio cholerae. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5403–5407. doi: 10.1073/pnas.88.12.5403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fenno J. C., LeBlanc D. J., Fives-Taylor P. Nucleotide sequence analysis of a type 1 fimbrial gene of Streptococcus sanguis FW213. Infect Immun. 1989 Nov;57(11):3527–3533. doi: 10.1128/iai.57.11.3527-3533.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  8. Ganeshkumar N., Hannam P. M., Kolenbrander P. E., McBride B. C. Nucleotide sequence of a gene coding for a saliva-binding protein (SsaB) from Streptococcus sanguis 12 and possible role of the protein in coaggregation with actinomyces. Infect Immun. 1991 Mar;59(3):1093–1099. doi: 10.1128/iai.59.3.1093-1099.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gregory E. M., Fridovich I. Oxygen toxicity and the superoxide dismutase. J Bacteriol. 1973 Jun;114(3):1193–1197. doi: 10.1128/jb.114.3.1193-1197.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hughes K. J., Everiss K. D., Harkey C. W., Peterson K. M. Identification of a Vibrio cholerae ToxR-activated gene (tagD) that is physically linked to the toxin-coregulated pilus (tcp) gene cluster. Gene. 1994 Oct 11;148(1):97–100. doi: 10.1016/0378-1119(94)90240-2. [DOI] [PubMed] [Google Scholar]
  11. Jacobson F. S., Morgan R. W., Christman M. F., Ames B. N. An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. J Biol Chem. 1989 Jan 25;264(3):1488–1496. [PubMed] [Google Scholar]
  12. Kim I. H., Kim K., Rhee S. G. Induction of an antioxidant protein of Saccharomyces cerevisiae by O2, Fe3+, or 2-mercaptoethanol. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6018–6022. doi: 10.1073/pnas.86.16.6018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kim K., Kim I. H., Lee K. Y., Rhee S. G., Stadtman E. R. The isolation and purification of a specific "protector" protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J Biol Chem. 1988 Apr 5;263(10):4704–4711. [PubMed] [Google Scholar]
  14. Kolenbrander P. E., Andersen R. N., Ganeshkumar N. Nucleotide sequence of the Streptococcus gordonii PK488 coaggregation adhesin gene, scaA, and ATP-binding cassette. Infect Immun. 1994 Oct;62(10):4469–4480. doi: 10.1128/iai.62.10.4469-4480.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kwon S. J., Park J. W., Choi W. K., Kim I. H., Kim K. Inhibition of metal-catalyzed oxidation systems by a yeast protector protein in the presence of thioredoxin. Biochem Biophys Res Commun. 1994 May 30;201(1):8–15. doi: 10.1006/bbrc.1994.1662. [DOI] [PubMed] [Google Scholar]
  16. Lim Y. S., Cha M. K., Kim H. K., Kim I. H. The thiol-specific antioxidant protein from human brain: gene cloning and analysis of conserved cysteine regions. Gene. 1994 Mar 25;140(2):279–284. doi: 10.1016/0378-1119(94)90558-4. [DOI] [PubMed] [Google Scholar]
  17. Lim Y. S., Cha M. K., Kim H. K., Uhm T. B., Park J. W., Kim K., Kim I. H. Removals of hydrogen peroxide and hydroxyl radical by thiol-specific antioxidant protein as a possible role in vivo. Biochem Biophys Res Commun. 1993 Apr 15;192(1):273–280. doi: 10.1006/bbrc.1993.1410. [DOI] [PubMed] [Google Scholar]
  18. Lim Y. S., Cha M. K., Yun C. H., Kim H. K., Kim K., Kim I. H. Purification and characterization of thiol-specific antioxidant protein from human red blood cell: a new type of antioxidant protein. Biochem Biophys Res Commun. 1994 Feb 28;199(1):199–206. doi: 10.1006/bbrc.1994.1214. [DOI] [PubMed] [Google Scholar]
  19. Privalle C. T., Beyer W. F., Jr, Fridovich I. Anaerobic induction of ProMn-superoxide dismutase in Escherichia coli. J Biol Chem. 1989 Feb 15;264(5):2758–2763. [PubMed] [Google Scholar]
  20. Rhee S. G., Kim K., Kim I. H., Stadtman E. R. Protein that prevents mercaptan-mediated protein oxidation. Methods Enzymol. 1990;186:478–485. doi: 10.1016/0076-6879(90)86142-i. [DOI] [PubMed] [Google Scholar]
  21. Stadtman E. R., Oliver C. N. Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem. 1991 Feb 5;266(4):2005–2008. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES