Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Oct;178(19):5644–5651. doi: 10.1128/jb.178.19.5644-5651.1996

New compatible solutes related to Di-myo-inositol-phosphate in members of the order Thermotogales.

L O Martins 1, L S Carreto 1, M S Da Costa 1, H Santos 1
PMCID: PMC178402  PMID: 8824608

Abstract

The accumulation of intracellular organic solutes was examined in six species of the order Thermotogales by nuclear magnetic resonance spectroscopy. The newly discovered compounds di-2-O-beta-mannosyl-di-myo-inositol-1,1'(3,3')-phosphate and di-myo-inositol-1,3'-phosphate were identified in Thermotoga maritima and Thermotoga neapolitana. In the latter species, at the optimum temperature and salinity the organic solute pool was composed of di-myo-inositol-1,1'(3,3')-phosphate, beta-glutamate, and alpha-glutamate in addition to di-myo-inositol-1,3'-phosphate and di-2-O-beta-mannosyl-di-myo-inositol-1,1'(3,3')-phosphate. The concentrations of the last two solutes increased dramatically at supraoptimal growth temperatures, whereas beta-glutamate increased mainly in response to a salinity stress. Nevertheless, di-myo-inositol-1,1'(3,3')-phosphate was the major compatible solute at salinities above the optimum for growth. The amino acids alpha-glutamate and proline were identified under optimum growth conditions in Thermosipho africanus, and beta-mannosylglycerate, trehalose, and glycine betaine were detected in Petrotoga miotherma. Organic solutes were not detected, under optimum growth conditions, in Thermotoga thermarum and Fervidobacterium islandicum, which have a low salt requirement or none.

Full Text

The Full Text of this article is available as a PDF (321.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyd R. K., DeFreitas A. S., Hoyle J., McCulloch A. W., McInnes A. G., Rogerson A., Walter J. A. Glycerol 1,2-cyclic phosphate in centric diatoms. Observation by 31P NMR in vivo, isolation, and structural determination. J Biol Chem. 1987 Sep 15;262(26):12406–12408. [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Cayley S., Lewis B. A., Guttman H. J., Record M. T., Jr Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein-DNA interactions in vivo. J Mol Biol. 1991 Nov 20;222(2):281–300. doi: 10.1016/0022-2836(91)90212-o. [DOI] [PubMed] [Google Scholar]
  4. Childers S. E., Vargas M., Noll K. M. Improved Methods for Cultivation of the Extremely Thermophilic Bacterium Thermotoga neapolitana. Appl Environ Microbiol. 1992 Dec;58(12):3949–3953. doi: 10.1128/aem.58.12.3949-3953.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ciulla R. A., Burggraf S., Stetter K. O., Roberts M. F. Occurrence and Role of Di-myo-Inositol-1,1'-Phosphate in Methanococcus igneus. Appl Environ Microbiol. 1994 Oct;60(10):3660–3664. doi: 10.1128/aem.60.10.3660-3664.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ciulla R., Clougherty C., Belay N., Krishnan S., Zhou C., Byrd D., Roberts M. F. Halotolerance of Methanobacterium thermoautotrophicum delta H and Marburg. J Bacteriol. 1994 Jun;176(11):3177–3187. doi: 10.1128/jb.176.11.3177-3187.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Csonka L. N., Hanson A. D. Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol. 1991;45:569–606. doi: 10.1146/annurev.mi.45.100191.003033. [DOI] [PubMed] [Google Scholar]
  8. Gorkovenko A., Roberts M. F. Cyclic 2,3-diphosphoglycerate as a component of a new branch in gluconeogenesis in Methanobacterium thermoautotrophicum delta H. J Bacteriol. 1993 Jul;175(13):4087–4095. doi: 10.1128/jb.175.13.4087-4095.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kanodia S., Roberts M. F. Methanophosphagen: Unique cyclic pyrophosphate isolated from Methanobacterium thermoautotrophicum. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5217–5221. doi: 10.1073/pnas.80.17.5217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Martins L. O., Santos H. Accumulation of Mannosylglycerate and Di-myo-Inositol-Phosphate by Pyrococcus furiosus in Response to Salinity and Temperature. Appl Environ Microbiol. 1995 Sep;61(9):3299–3303. doi: 10.1128/aem.61.9.3299-3303.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nunes O. C., Manaia C. M., Da Costa M. S., Santos H. Compatible Solutes in the Thermophilic Bacteria Rhodothermus marinus and "Thermus thermophilus". Appl Environ Microbiol. 1995 Jun;61(6):2351–2357. doi: 10.1128/aem.61.6.2351-2357.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ostrovsky D., Shipanova I., Sibeldina L., Shashkov A., Kharatian E., Malyarova I., Tantsyrev G. A new cyclopyrophosphate as a bacterial antistressor? FEBS Lett. 1992 Feb 24;298(2-3):159–161. doi: 10.1016/0014-5793(92)80045-i. [DOI] [PubMed] [Google Scholar]
  13. Ravot G., Ollivier B., Magot M., Patel B., Crolet J., Fardeau M., Garcia J. Thiosulfate reduction, an important physiological feature shared by members of the order thermotogales. Appl Environ Microbiol. 1995 May;61(5):2053–2055. doi: 10.1128/aem.61.5.2053-2055.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rengpipat S., Lowe S. E., Zeikus J. G. Effect of extreme salt concentrations on the physiology and biochemistry of Halobacteroides acetoethylicus. J Bacteriol. 1988 Jul;170(7):3065–3071. doi: 10.1128/jb.170.7.3065-3071.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Robertson D. E., Roberts M. F. Organic osmolytes in methanogenic archaebacteria. Biofactors. 1991 Jan;3(1):1–9. [PubMed] [Google Scholar]
  16. Scholz S., Sonnenbichler J., Schäfer W., Hensel R. Di-myo-inositol-1,1'-phosphate: a new inositol phosphate isolated from Pyrococcus woesei. FEBS Lett. 1992 Jul 20;306(2-3):239–242. doi: 10.1016/0014-5793(92)81008-a. [DOI] [PubMed] [Google Scholar]
  17. Sowers K. R., Gunsalus R. P. Halotolerance in Methanosarcina spp.: Role of N(sup(epsilon))-Acetyl-(beta)-Lysine, (alpha)-Glutamate, Glycine Betaine, and K(sup+) as Compatible Solutes for Osmotic Adaptation. Appl Environ Microbiol. 1995 Dec;61(12):4382–4388. doi: 10.1128/aem.61.12.4382-4388.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tolman C. J., Kanodia S., Roberts M. F., Daniels L. 31P-NMR spectra of methanogens: 2,3-cyclopyrophosphoglycerate is detectable only in methanobacteria strains. Biochim Biophys Acta. 1986 May 29;886(3):345–352. doi: 10.1016/0167-4889(86)90169-2. [DOI] [PubMed] [Google Scholar]
  19. Turner D. L., Santos H., Fareleira P., Pacheco I., LeGall J., Xavier A. V. Structure determination of a novel cyclic phosphocompound isolated from Desulfovibrio desulfuricans. Biochem J. 1992 Jul 15;285(Pt 2):387–390. doi: 10.1042/bj2850387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES