Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Oct;178(19):5676–5682. doi: 10.1128/jb.178.19.5676-5682.1996

Mutations in apbC (mrp) prevent function of the alternative pyrimidine biosynthetic pathway in Salmonella typhimurium.

L Petersen 1, D M Downs 1
PMCID: PMC178406  PMID: 8824612

Abstract

The alternative pyrimidine biosynthetic (APB) pathway can synthesize the 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) moiety of thiamine in Salmonella typhimurium independently of de novo purine biosynthesis. When mutants defective in function of the APB pathway were isolated, the predominant class (40%) were defective in a single locus we have designated apbC. Mutations in apbC block function of the APB pathway since they prevent growth of a purF mutant in the absence of thiamine. Lesions in apbC also cause a thiamine auxotrophy in strains proficient in purine biosynthesis when fructose is provided as the sole carbon and energy source. Results presented here are consistent with ApbC being involved in the conversion of aminoimidazole ribonucleotide to HMP, and we suggest that ApbC performs a redundant step in thiamine synthesis. Sequence analysis demonstrated that apbC mutations were alleles of mrp, a locus previously reported in Escherichia coli as a metG-related protein. We propose that this locus in S. typhimurium be designated apbC to reflect its involvement in thiamine synthesis.

Full Text

The Full Text of this article is available as a PDF (250.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Balch W. E., Wolfe R. S. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. Appl Environ Microbiol. 1976 Dec;32(6):781–791. doi: 10.1128/aem.32.6.781-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benson N. R., Goldman B. S. Rapid mapping in Salmonella typhimurium with Mud-P22 prophages. J Bacteriol. 1992 Mar;174(5):1673–1681. doi: 10.1128/jb.174.5.1673-1681.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Castilho B. A., Olfson P., Casadaban M. J. Plasmid insertion mutagenesis and lac gene fusion with mini-mu bacteriophage transposons. J Bacteriol. 1984 May;158(2):488–495. doi: 10.1128/jb.158.2.488-495.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chan R. K., Botstein D., Watanabe T., Ogata Y. Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high-frequency-transducing lysate. Virology. 1972 Dec;50(3):883–898. doi: 10.1016/0042-6822(72)90442-4. [DOI] [PubMed] [Google Scholar]
  6. Dardel F., Panvert M., Fayat G. Transcription and regulation of expression of the Escherichia coli methionyl-tRNA synthetase gene. Mol Gen Genet. 1990 Aug;223(1):121–133. doi: 10.1007/BF00315804. [DOI] [PubMed] [Google Scholar]
  7. Downs D. M. Evidence for a new, oxygen-regulated biosynthetic pathway for the pyrimidine moiety of thiamine in Salmonella typhimurium. J Bacteriol. 1992 Mar;174(5):1515–1521. doi: 10.1128/jb.174.5.1515-1521.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Downs D. M., Petersen L. apbA, a new genetic locus involved in thiamine biosynthesis in Salmonella typhimurium. J Bacteriol. 1994 Aug;176(16):4858–4864. doi: 10.1128/jb.176.16.4858-4864.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elliott T., Roth J. R. Characterization of Tn10d-Cam: a transposition-defective Tn10 specifying chloramphenicol resistance. Mol Gen Genet. 1988 Aug;213(2-3):332–338. doi: 10.1007/BF00339599. [DOI] [PubMed] [Google Scholar]
  10. Enos-Berlage J. L., Downs D. M. Involvement of the oxidative pentose phosphate pathway in thiamine biosynthesis in Salmonella typhimurium. J Bacteriol. 1996 Mar;178(5):1476–1479. doi: 10.1128/jb.178.5.1476-1479.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Estramareix B. Biosynthèse de la pyrimidine de la thiamine: origine du carbone 6 chez Salmonella typhimurium. Biochim Biophys Acta. 1970 Apr 14;208(1):170–171. [PubMed] [Google Scholar]
  12. Estramareix B., Lesieur M. Biosynthèse de la pyrimidine de la thiamine: origine des carbones 2 et 4 chez Salmonella typhimurium. Biochim Biophys Acta. 1969 Nov 18;192(2):375–377. [PubMed] [Google Scholar]
  13. Imamura N., Nakayama H. thiK and thiL loci of Escherichia coli. J Bacteriol. 1982 Aug;151(2):708–717. doi: 10.1128/jb.151.2.708-717.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kleckner N., Bender J., Gottesman S. Uses of transposons with emphasis on Tn10. Methods Enzymol. 1991;204:139–180. doi: 10.1016/0076-6879(91)04009-d. [DOI] [PubMed] [Google Scholar]
  15. Kumaoka H., Brown G. M. Biosynthesis of thiamine. VI. Incorporation of formate into carbon atom two of the pyrimidine moiety of thiamine. Arch Biochem Biophys. 1967 Nov;122(2):378–384. doi: 10.1016/0003-9861(67)90208-1. [DOI] [PubMed] [Google Scholar]
  16. Newell P. C., Tucker R. G. Biosynthesis of the pyrimidine moiety of thiamine. A new route of pyrimidine biosynthesis involving purine intermediates. Biochem J. 1968 Jan;106(1):279–287. doi: 10.1042/bj1060279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Newell P. C., Tucker R. G. Precursors of the pyrimidine moiety of thiamine. Biochem J. 1968 Jan;106(1):271–277. doi: 10.1042/bj1060271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. O'Toole G. A., Rondon M. R., Escalante-Semerena J. C. Analysis of mutants of Salmonella typhimurium defective in the synthesis of the nucleotide loop of cobalamin. J Bacteriol. 1993 Jun;175(11):3317–3326. doi: 10.1128/jb.175.11.3317-3326.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Petersen L., Enos-Berlage J., Downs D. M. Genetic analysis of metabolic crosstalk and its impact on thiamine synthesis in Salmonella typhimurium. Genetics. 1996 May;143(1):37–44. doi: 10.1093/genetics/143.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ramseier T. M., Bledig S., Michotey V., Feghali R., Saier M. H., Jr The global regulatory protein FruR modulates the direction of carbon flow in Escherichia coli. Mol Microbiol. 1995 Jun;16(6):1157–1169. doi: 10.1111/j.1365-2958.1995.tb02339.x. [DOI] [PubMed] [Google Scholar]
  21. Ramseier T. M., Nègre D., Cortay J. C., Scarabel M., Cozzone A. J., Saier M. H., Jr In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to the fru, pps, ace, pts and icd operons of Escherichia coli and Salmonella typhimurium. J Mol Biol. 1993 Nov 5;234(1):28–44. doi: 10.1006/jmbi.1993.1561. [DOI] [PubMed] [Google Scholar]
  22. Saier M. H., Jr, Ramseier T. M. The catabolite repressor/activator (Cra) protein of enteric bacteria. J Bacteriol. 1996 Jun;178(12):3411–3417. doi: 10.1128/jb.178.12.3411-3417.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schmieger H. Phage P22-mutants with increased or decreased transduction abilities. Mol Gen Genet. 1972;119(1):75–88. doi: 10.1007/BF00270447. [DOI] [PubMed] [Google Scholar]
  25. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  26. Vander Horn P. B., Backstrom A. D., Stewart V., Begley T. P. Structural genes for thiamine biosynthetic enzymes (thiCEFGH) in Escherichia coli K-12. J Bacteriol. 1993 Feb;175(4):982–992. doi: 10.1128/jb.175.4.982-992.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wahl R., Rice P., Rice C. M., Kröger M. ECD--a totally integrated database of Escherichia coli K12. Nucleic Acids Res. 1994 Sep;22(17):3450–3455. doi: 10.1093/nar/22.17.3450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Way J. C., Davis M. A., Morisato D., Roberts D. E., Kleckner N. New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene. 1984 Dec;32(3):369–379. doi: 10.1016/0378-1119(84)90012-x. [DOI] [PubMed] [Google Scholar]
  29. Webb E., Febres F., Downs D. M. Thiamine pyrophosphate (TPP) negatively regulates transcription of some thi genes of Salmonella typhimurium. J Bacteriol. 1996 May;178(9):2533–2538. doi: 10.1128/jb.178.9.2533-2538.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. White R. H., Rudolph F. B. Biosynthesis of the pyrimidine moiety of thiamin in Escherichia coli: incorporation of stable isotope-labeled glycines. Biochemistry. 1979 Jun 12;18(12):2632–2636. doi: 10.1021/bi00579a031. [DOI] [PubMed] [Google Scholar]
  31. Xu K., Delling J., Elliott T. The genes required for heme synthesis in Salmonella typhimurium include those encoding alternative functions for aerobic and anaerobic coproporphyrinogen oxidation. J Bacteriol. 1992 Jun;174(12):3953–3963. doi: 10.1128/jb.174.12.3953-3963.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Youderian P., Sugiono P., Brewer K. L., Higgins N. P., Elliott T. Packaging specific segments of the Salmonella chromosome with locked-in Mud-P22 prophages. Genetics. 1988 Apr;118(4):581–592. doi: 10.1093/genetics/118.4.581. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES