Abstract
A rough (R) Brucella abortus 45/20 mutant was more sensitive to the bactericidal activity of polymyxin B and lactoferricin B than was its smooth (S) counterpart but considerably more resistant than Salmonella montevideo. The outer membrane (OM) and isolated lipopolysaccharide (LPS) of S. montevideo showed a higher affinity for these cationic peptides than did the corresponding B. abortus OM and LPS. We took advantage of the moderate sensitivity of R B. abortus to cationic peptides to construct live R B. abortus-S-LPS chimeras to test the activities of polymyxin B, lactoferricin B, and EDTA. Homogeneous and abundant peripheral distribution of the heterologous S-LPS was observed on the surface of the chimeras, and this coating had no effect on the viability or morphology of the cells. When the heterologous LPS corresponded to the less sensitive bacterium S B. abortus S19, the chimeras were more resistant to cationic peptides; in contrast, when the S-LPS was from the more sensitive bacterium S. montevideo, the chimeras were more susceptible to the action of peptides and EDTA. A direct correlation between the amount of heterologous S-LPS on the surface of chimeric Brucella cells and peptide sensitivity was observed. Whereas the damage produced by polymyxin B in S. montevideo and B. abortus-S. montevideo S-LPS chimeras was manifested mainly as OM blebbing and inner membrane rolling, lactoferricin B caused inner membrane detachment, vacuolization, and the formation of internal electron-dense granules in these cells. Native S and R B. abortus strains were permeable to the hydrophobic probe N-phenyl-1-naphthylamine (NPN). In contrast, only reduced amounts of NPN partitioned into the OMs of the S. montevideo and B. abortus-S. montevideo S-LPS chimeras. Following peptide exposure, accelerated NPN uptake similar to that observed for S. montevideo was detected for the B. abortus-S. montevideo LPS chimeras. The partition of NPN into native or EDTA-, polymyxin B-, or lactoferricin B-treated LPS micelles of S. montevideo or B. abortus mimicked the effects observed with intact cells, and this was confirmed by using micelle hybrids of B. abortus and S. montevideo LPSs. The results showed that LPS is the main cause of B. abortus' resistance to bactericidal cationic peptides, the OM-disturbing action of divalent cationic chelants, and OM permeability to hydrophobic substances. It is proposed that these three features are related to the ability of Brucella bacteria to multiply within phagocytes.
Full Text
The Full Text of this article is available as a PDF (964.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aragón V., Díaz R., Moreno E., Moriyón I. Characterization of Brucella abortus and Brucella melitensis native haptens as outer membrane O-type polysaccharides independent from the smooth lipopolysaccharide. J Bacteriol. 1996 Feb;178(4):1070–1079. doi: 10.1128/jb.178.4.1070-1079.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker P. J., Wilson J. B. Chemical composition and biological properties of the endotoxin of Brucella abortus. J Bacteriol. 1965 Oct;90(4):895–902. doi: 10.1128/jb.90.4.895-902.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caroff M., Bundle D. R., Perry M. B. Structure of the O-chain of the phenol-phase soluble cellular lipopolysaccharide of Yersinia enterocolitica serotype O:9. Eur J Biochem. 1984 Feb 15;139(1):195–200. doi: 10.1111/j.1432-1033.1984.tb07994.x. [DOI] [PubMed] [Google Scholar]
- Carr C., Jr, Morrison D. C. Mechanism of polymyxin B-mediated lysis of lipopolysaccharide-treated erythrocytes. Infect Immun. 1985 Jul;49(1):84–89. doi: 10.1128/iai.49.1.84-89.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cloeckaert A., de Wergifosse P., Dubray G., Limet J. N. Identification of seven surface-exposed Brucella outer membrane proteins by use of monoclonal antibodies: immunogold labeling for electron microscopy and enzyme-linked immunosorbent assay. Infect Immun. 1990 Dec;58(12):3980–3987. doi: 10.1128/iai.58.12.3980-3987.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas J. T., Rosenberg E. Y., Nikaido H., Verstreate D. R., Winter A. J. Porins of Brucella species. Infect Immun. 1984 Apr;44(1):16–21. doi: 10.1128/iai.44.1.16-21.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feingold D. S., HsuChen C. C., Sud I. J. Basis for the selectivity of action of the polymyxin antibiotics on cell membranes. Ann N Y Acad Sci. 1974 May 10;235(0):480–492. doi: 10.1111/j.1749-6632.1974.tb43285.x. [DOI] [PubMed] [Google Scholar]
- Fields P. I., Groisman E. A., Heffron F. A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science. 1989 Feb 24;243(4894 Pt 1):1059–1062. doi: 10.1126/science.2646710. [DOI] [PubMed] [Google Scholar]
- Freer E., Rojas N., Weintraub A., Lindberg A. A., Moreno E. Heterogeneity of Brucella abortus lipopolysaccharides. Res Microbiol. 1995 Sep;146(7):569–578. doi: 10.1016/0923-2508(96)80563-8. [DOI] [PubMed] [Google Scholar]
- Gamazo C., Moriyón I. Release of outer membrane fragments by exponentially growing Brucella melitensis cells. Infect Immun. 1987 Mar;55(3):609–615. doi: 10.1128/iai.55.3.609-615.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilleland H. E., Jr, Murray R. G. Ultrastructural study of polymyxin-resistant isolates of Pseudomonas aeruginosa. J Bacteriol. 1976 Jan;125(1):267–281. doi: 10.1128/jb.125.1.267-281.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein J., Hoffman T., Frasch C., Lizzio E. F., Beining P. R., Hochstein D., Lee Y. L., Angus R. D., Golding B. Lipopolysaccharide (LPS) from Brucella abortus is less toxic than that from Escherichia coli, suggesting the possible use of B. abortus or LPS from B. abortus as a carrier in vaccines. Infect Immun. 1992 Apr;60(4):1385–1389. doi: 10.1128/iai.60.4.1385-1389.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gómez-Miguel M. J., Moriyón I., López J. Brucella outer membrane lipoprotein shares antigenic determinants with Escherichia coli Braun lipoprotein and is exposed on the cell surface. Infect Immun. 1987 Jan;55(1):258–262. doi: 10.1128/iai.55.1.258-262.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helander I. M., Nummila K., Kilpeläinen I., Vaara M. Increased substitution of phosphate groups in lipopolysaccharides and lipid A of polymyxin-resistant mutants of Salmonella typhimurium and Escherichia coli. Prog Clin Biol Res. 1995;392:15–23. [PubMed] [Google Scholar]
- HsuChen C. C., Feingold D. S. The mechanism of polymyxin B action and selectivity toward biologic membranes. Biochemistry. 1973 May 22;12(11):2105–2111. doi: 10.1021/bi00735a014. [DOI] [PubMed] [Google Scholar]
- Kreutzer D. L., Robertson D. C. Surface macromolecules and virulence in intracellular parasitism: comparison of cell envelope components of smooth and rough strains of Brucella abortus. Infect Immun. 1979 Mar;23(3):819–828. doi: 10.1128/iai.23.3.819-828.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuhn H. M., Basu S., Mayer H. Comparison of enterobacterial common antigen from different species by serological techniques. Eur J Biochem. 1987 Jan 2;162(1):69–74. doi: 10.1111/j.1432-1033.1987.tb10543.x. [DOI] [PubMed] [Google Scholar]
- Leive L. The barrier function of the gram-negative envelope. Ann N Y Acad Sci. 1974 May 10;235(0):109–129. doi: 10.1111/j.1749-6632.1974.tb43261.x. [DOI] [PubMed] [Google Scholar]
- Leong D., Diaz R., Milner K., Rudbach J., Wilson J. B. Some structural and biological properties of Brucella endotoxin. Infect Immun. 1970 Feb;1(2):174–182. doi: 10.1128/iai.1.2.174-182.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loh B., Grant C., Hancock R. E. Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1984 Oct;26(4):546–551. doi: 10.1128/aac.26.4.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martínez de Tejada G., Moriyón I. The outer membranes of Brucella spp. are not barriers to hydrophobic permeants. J Bacteriol. 1993 Aug;175(16):5273–5275. doi: 10.1128/jb.175.16.5273-5275.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martínez de Tejada G., Pizarro-Cerdá J., Moreno E., Moriyón I. The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides. Infect Immun. 1995 Aug;63(8):3054–3061. doi: 10.1128/iai.63.8.3054-3061.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreno E., Berman D. T., Boettcher L. A. Biological activities of Brucella abortus lipopolysaccharides. Infect Immun. 1981 Jan;31(1):362–370. doi: 10.1128/iai.31.1.362-370.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreno E., Jones L. M., Berman D. T. Immunochemical characterization of rough Brucella lipopolysaccharides. Infect Immun. 1984 Mar;43(3):779–782. doi: 10.1128/iai.43.3.779-782.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreno E., Pitt M. W., Jones L. M., Schurig G. G., Berman D. T. Purification and characterization of smooth and rough lipopolysaccharides from Brucella abortus. J Bacteriol. 1979 May;138(2):361–369. doi: 10.1128/jb.138.2.361-369.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreno E., Stackebrandt E., Dorsch M., Wolters J., Busch M., Mayer H. Brucella abortus 16S rRNA and lipid A reveal a phylogenetic relationship with members of the alpha-2 subdivision of the class Proteobacteria. J Bacteriol. 1990 Jul;172(7):3569–3576. doi: 10.1128/jb.172.7.3569-3576.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moriyon I., Berman D. T. Effects of nonionic, ionic, and dipolar ionic detergents and EDTA on the Brucella cell envelope. J Bacteriol. 1982 Nov;152(2):822–828. doi: 10.1128/jb.152.2.822-828.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moriyón I., Gamazo C., Díaz R. Properties of the outer membrane of Brucella. Ann Inst Pasteur Microbiol. 1987 Jan-Feb;138(1):89–91. doi: 10.1016/0769-2609(87)90082-2. [DOI] [PubMed] [Google Scholar]
- Rasool O., Freer E., Moreno E., Jarstrand C. Effect of Brucella abortus lipopolysaccharide on oxidative metabolism and lysozyme release by human neutrophils. Infect Immun. 1992 Apr;60(4):1699–1702. doi: 10.1128/iai.60.4.1699-1702.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rojas N., Freer E., Weintraub A., Ramirez M., Lind S., Moreno E. Immunochemical identification of Brucella abortus lipopolysaccharide epitopes. Clin Diagn Lab Immunol. 1994 Mar;1(2):206–213. doi: 10.1128/cdli.1.2.206-213.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rudbach J. A., Milner K. C., Ribi E. Hybrid formation between bacterial endotoxins. J Exp Med. 1967 Jul 1;126(1):63–79. doi: 10.1084/jem.126.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sawyer J. G., Martin N. L., Hancock R. E. Interaction of macrophage cationic proteins with the outer membrane of Pseudomonas aeruginosa. Infect Immun. 1988 Mar;56(3):693–698. doi: 10.1128/iai.56.3.693-698.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith L. D., Ficht T. A. Pathogenesis of Brucella. Crit Rev Microbiol. 1990;17(3):209–230. doi: 10.3109/10408419009105726. [DOI] [PubMed] [Google Scholar]
- Thiele O. W., Schwinn G. The free lipids of Brucella melitensis and Bordetella pertussis. Eur J Biochem. 1973 Apr;34(2):333–344. doi: 10.1111/j.1432-1033.1973.tb02764.x. [DOI] [PubMed] [Google Scholar]
- Träuble H., Overath P. The structure of Escherichia coli membranes studied by fluorescence measurements of lipid phase transitions. Biochim Biophys Acta. 1973 May 25;307(3):491–512. doi: 10.1016/0005-2736(73)90296-4. [DOI] [PubMed] [Google Scholar]
- Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
- Vaara M., Vaara T. Outer membrane permeability barrier disruption by polymyxin in polymyxin-susceptible and -resistant Salmonella typhimurium. Antimicrob Agents Chemother. 1981 Apr;19(4):578–583. doi: 10.1128/aac.19.4.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaara M., Vaara T. Polycations as outer membrane-disorganizing agents. Antimicrob Agents Chemother. 1983 Jul;24(1):114–122. doi: 10.1128/aac.24.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamauchi K., Tomita M., Giehl T. J., Ellison R. T., 3rd Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect Immun. 1993 Feb;61(2):719–728. doi: 10.1128/iai.61.2.719-728.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
