Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Oct;178(20):5897–5903. doi: 10.1128/jb.178.20.5897-5903.1996

Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus.

X Mai 1, M W Adams 1
PMCID: PMC178444  PMID: 8830684

Abstract

Pyrococcus furiosus is a strictly anaerobic archaeon (archaebacterium) that grows at temperatures up to 105 degrees C by fermenting carbohydrates and peptides. Cell extracts have been previously shown to contain an unusual acetyl coenzyme A (acetyl-CoA) synthetase (ACS) which catalyzes the formation of acetate and ATP from acetyl-CoA by using ADP and phosphate rather than AMP and PPi. We show here that P. furiosus contains two distinct isoenzymes of ACS, and both have been purified. One, termed ACS I, uses acetyl-CoA and isobutyryl-CoA but not indoleacetyl-CoA or phenylacetyl-CoA as substrates, while the other, ACS II, utilizes all four CoA derivatives. Succinyl-CoA did not serve as a substrate for either enzyme. ACS I and ACS II have similar molecular masses (approximately 140 kDa), and both appear to be heterotetramers (alpha2beta2) of two different subunits of 45 (alpha) and 23 (beta) kDa. They lack metal ions such as Fe2+, Cu2+, Zn2+, and Mg2+ and are stable to oxygen. At 25 degrees C, both enzymes were virtually inactive and exhibited optimal activities above 90 degrees C (at pH 8.0) and at pH 9.0 (at 80 degrees C). The times required to lose 50% of their activity at 80 degrees C were about 18 h for ACS I and 8 h for ACS II. With both enzymes in the acid formation reactions, ADP and phosphate could be replaced by GDP and phosphate but not by CDP and phosphate or by AMP and PPi. The apparent Km values for ADP, GDP, and phosphate were approximately 150, 132, and 396 microM, respectively, for ACS I (using acetyl-CoA) and 61, 236, and 580 microM, respectively, for ACS II (using indoleacetyl-CoA). With ADP and phosphate as substrates, the apparent Km values for acetyl-CoA and isobutyryl-CoA were 25 and 29 microM, respectively, for ACS I and 26 and 12 microM, respectively, for ACS II. With ACS II, the apparent Km value for phenylacetyl-CoA was 4 microM. Both enzymes also catalyzed the reverse reaction, the ATP-dependent formation of the CoA derivatives of acetate (I and II), isobutyrate (I and II), phenylacetate (II only), and indoleacetate (II only). The N-terminal amino acid sequences of the two subunits of ACS I were similar to those of ACS II and to that of a hypothetical 67-kDa protein from Escherichia coli but showed no similarity to mesophilic ACS-type enzymes. To our knowledge, ACS I and II are the first ATP-utilizing enzymes to be purified from a hyperthermophile, and ACS II is the first enzyme of the ACS type to utilize aromatic CoA derivatives.

Full Text

The Full Text of this article is available as a PDF (285.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Andreotti G., Cubellis M. V., Nitti G., Sannia G., Mai X., Adams M. W., Marino G. An extremely thermostable aromatic aminotransferase from the hyperthermophilic archaeon Pyrococcus furiosus. Biochim Biophys Acta. 1995 Feb 22;1247(1):90–96. doi: 10.1016/0167-4838(94)00211-x. [DOI] [PubMed] [Google Scholar]
  3. Blamey J. M., Adams M. W. Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. Biochim Biophys Acta. 1993 Jan 15;1161(1):19–27. doi: 10.1016/0167-4838(93)90190-3. [DOI] [PubMed] [Google Scholar]
  4. Brown T. D., Jones-Mortimer M. C., Kornberg H. L. The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J Gen Microbiol. 1977 Oct;102(2):327–336. doi: 10.1099/00221287-102-2-327. [DOI] [PubMed] [Google Scholar]
  5. Bryant F. O., Adams M. W. Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus. J Biol Chem. 1989 Mar 25;264(9):5070–5079. [PubMed] [Google Scholar]
  6. Connerton I. F., Fincham J. R., Sandeman R. A., Hynes M. J. Comparison and cross-species expression of the acetyl-CoA synthetase genes of the Ascomycete fungi, Aspergillus nidulans and Neurospora crassa. Mol Microbiol. 1990 Mar;4(3):451–460. doi: 10.1111/j.1365-2958.1990.tb00611.x. [DOI] [PubMed] [Google Scholar]
  7. De Virgilio C., Bürckert N., Barth G., Neuhaus J. M., Boller T., Wiemken A. Cloning and disruption of a gene required for growth on acetate but not on ethanol: the acetyl-coenzyme A synthetase gene of Saccharomyces cerevisiae. Yeast. 1992 Dec;8(12):1043–1051. doi: 10.1002/yea.320081207. [DOI] [PubMed] [Google Scholar]
  8. Eggen R. I., Geerling A. C., Boshoven A. B., de Vos W. M. Cloning, sequence analysis, and functional expression of the acetyl coenzyme A synthetase gene from Methanothrix soehngenii in Escherichia coli. J Bacteriol. 1991 Oct;173(20):6383–6389. doi: 10.1128/jb.173.20.6383-6389.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Garre V., Murillo F. J., Torres-Martínez S. Isolation of the facA (acetyl-CoA synthetase) gene of Phycomyces blakesleeanus. Mol Gen Genet. 1994 Aug 2;244(3):278–286. doi: 10.1007/BF00285455. [DOI] [PubMed] [Google Scholar]
  10. Grundy F. J., Waters D. A., Takova T. Y., Henkin T. M. Identification of genes involved in utilization of acetate and acetoin in Bacillus subtilis. Mol Microbiol. 1993 Oct;10(2):259–271. doi: 10.1111/j.1365-2958.1993.tb01952.x. [DOI] [PubMed] [Google Scholar]
  11. Hasegawa H., Parniak M., Kaufman S. Determination of the phosphate content of purified proteins. Anal Biochem. 1982 Mar 1;120(2):360–364. doi: 10.1016/0003-2697(82)90358-x. [DOI] [PubMed] [Google Scholar]
  12. Heider J., Ma K., Adams M. W. Purification, characterization, and metabolic function of tungsten-containing aldehyde ferredoxin oxidoreductase from the hyperthermophilic and proteolytic archaeon Thermococcus strain ES-1. J Bacteriol. 1995 Aug;177(16):4757–4764. doi: 10.1128/jb.177.16.4757-4764.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heider J., Mai X., Adams M. W. Characterization of 2-ketoisovalerate ferredoxin oxidoreductase, a new and reversible coenzyme A-dependent enzyme involved in peptide fermentation by hyperthermophilic archaea. J Bacteriol. 1996 Feb;178(3):780–787. doi: 10.1128/jb.178.3.780-787.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hoaki T., Nishijima M., Kato M., Adachi K., Mizobuchi S., Hanzawa N., Maruyama T. Growth requirements of hyperthermophilic sulfur-dependent heterotrophic archaea isolated from a shallow submarine geothermal system with reference to their essential amino acids. Appl Environ Microbiol. 1994 Aug;60(8):2898–2904. doi: 10.1128/aem.60.8.2898-2904.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hoaki T., Nishijima M., Miyashita H., Maruyama T. Dense Community of Hyperthermophilic Sulfur-Dependent Heterotrophs in a Geothermally Heated Shallow Submarine Biotope near Kodakara-Jima Island, Kagoshima, Japan. Appl Environ Microbiol. 1995 May;61(5):1931–1937. doi: 10.1128/aem.61.5.1931-1937.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hoaki T., Wirsen C. O., Hanzawa S., Maruyama T., Jannasch H. W. Amino Acid Requirements of Two Hyperthermophilic Archaeal Isolates from Deep-Sea Vents, Desulfurococcus Strain SY and Pyrococcus Strain GB-D. Appl Environ Microbiol. 1993 Feb;59(2):610–613. doi: 10.1128/aem.59.2.610-613.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Imesch E., Rous S. Partial purification of rat liver cytoplasmic acetyl-CoA synthetase; characterization of some properties. Int J Biochem. 1984;16(8):875–881. doi: 10.1016/0020-711x(84)90146-0. [DOI] [PubMed] [Google Scholar]
  18. Jetten M. S., Stams A. J., Zehnder A. J. Isolation and characterization of acetyl-coenzyme A synthetase from Methanothrix soehngenii. J Bacteriol. 1989 Oct;171(10):5430–5435. doi: 10.1128/jb.171.10.5430-5435.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kengen S. W., de Bok F. A., van Loo N. D., Dijkema C., Stams A. J., de Vos W. M. Evidence for the operation of a novel Embden-Meyerhof pathway that involves ADP-dependent kinases during sugar fermentation by Pyrococcus furiosus. J Biol Chem. 1994 Jul 1;269(26):17537–17541. [PubMed] [Google Scholar]
  20. Kletzin A., Adams M. W. Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima. J Bacteriol. 1996 Jan;178(1):248–257. doi: 10.1128/jb.178.1.248-257.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kratzer S., Schüller H. J. Carbon source-dependent regulation of the acetyl-coenzyme A synthetase-encoding gene ACS1 from Saccharomyces cerevisiae. Gene. 1995 Aug 8;161(1):75–79. doi: 10.1016/0378-1119(95)00289-i. [DOI] [PubMed] [Google Scholar]
  22. Kumari S., Tishel R., Eisenbach M., Wolfe A. J. Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol. 1995 May;177(10):2878–2886. doi: 10.1128/jb.177.10.2878-2886.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Ma K., Robb F. T., Adams M. W. Purification and characterization of NADP-specific alcohol dehydrogenase and glutamate dehydrogenase from the hyperthermophilic archaeon Thermococcus litoralis. Appl Environ Microbiol. 1994 Feb;60(2):562–568. doi: 10.1128/aem.60.2.562-568.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mai X., Adams M. W. Characterization of a fourth type of 2-keto acid-oxidizing enzyme from a hyperthermophilic archaeon: 2-ketoglutarate ferredoxin oxidoreductase from Thermococcus litoralis. J Bacteriol. 1996 Oct;178(20):5890–5896. doi: 10.1128/jb.178.20.5890-5896.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mai X., Adams M. W. Indolepyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. A new enzyme involved in peptide fermentation. J Biol Chem. 1994 Jun 17;269(24):16726–16732. [PubMed] [Google Scholar]
  27. Martínez-Blanco H., Reglero A., Fernández-Valverde M., Ferrero M. A., Moreno M. A., Peñalva M. A., Luengo J. M. Isolation and characterization of the acetyl-CoA synthetase from Penicillium chrysogenum. Involvement of this enzyme in the biosynthesis of penicillins. J Biol Chem. 1992 Mar 15;267(8):5474–5481. [PubMed] [Google Scholar]
  28. Mukund S., Adams M. W. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem. 1995 Apr 14;270(15):8389–8392. doi: 10.1074/jbc.270.15.8389. [DOI] [PubMed] [Google Scholar]
  29. Mukund S., Adams M. W. Molybdenum and vanadium do not replace tungsten in the catalytically active forms of the three tungstoenzymes in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol. 1996 Jan;178(1):163–167. doi: 10.1128/jb.178.1.163-167.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Preston G. G., Wall J. D., Emerich D. W. Purification and properties of acetyl-CoA synthetase from Bradyrhizobium japonicum bacteroids. Biochem J. 1990 Apr 1;267(1):179–183. doi: 10.1042/bj2670179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Priefert H., Steinbüchel A. Identification and molecular characterization of the acetyl coenzyme A synthetase gene (acoE) of Alcaligenes eutrophus. J Bacteriol. 1992 Oct;174(20):6590–6599. doi: 10.1128/jb.174.20.6590-6599.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Reeves R. E., Warren L. G., Susskind B., Lo H. S. An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a new acetate thiokinase. J Biol Chem. 1977 Jan 25;252(2):726–731. [PubMed] [Google Scholar]
  33. Sanchez L. B., Müller M. Purification and characterization of the acetate forming enzyme, acetyl-CoA synthetase (ADP-forming) from the amitochondriate protist, Giardia lamblia. FEBS Lett. 1996 Jan 15;378(3):240–244. doi: 10.1016/0014-5793(95)01463-2. [DOI] [PubMed] [Google Scholar]
  34. Satyanarayana T., Mandel A. D., Klein H. P. Evidence for two immunologically distinct acetyl-co-enzyme A synthetase in yeast. Biochim Biophys Acta. 1974 Apr 25;341(2):396–401. doi: 10.1016/0005-2744(74)90232-0. [DOI] [PubMed] [Google Scholar]
  35. Weber K., Pringle J. R., Osborn M. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol. 1972;26:3–27. doi: 10.1016/s0076-6879(72)26003-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES