Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Oct;178(20):5925–5929. doi: 10.1128/jb.178.20.5925-5929.1996

The DegP and DegQ periplasmic endoproteases of Escherichia coli: specificity for cleavage sites and substrate conformation.

H Kolmar 1, P R Waller 1, R T Sauer 1
PMCID: PMC178448  PMID: 8830688

Abstract

DegP and DegQ are homologous endoproteases found in the periplasmic compartment of Escherichia coli. The studies presented here suggest that DegP and DegQ have very similar substrate specificities and cleave substrates which are transiently or globally denatured. Model substrates were cleaved at discrete Val/Xaa or Ile/Xaa sites, suggesting that aliphatic, beta-branched residues, which are typically buried in the hydrophobic core of most proteins, are important determinants of cleavage specificity. Indeed, the peptide bonds cleaved in the model substrates are generally inaccessible in the native three-dimensional structures. In addition, a chimeric fusion protein, which is a DegP substrate in vivo, is degraded in vitro only after reduction of its intramolecular disulfide bonds. Taken together, these findings suggest that DegP and DegQ may degrade transiently denatured proteins, unfolded proteins which accumulate in the periplasm following heat shock or other stress conditions, and/or newly secreted proteins prior to folding and disulfide bond formation. Cross-linking studies indicate that both DegP and DegQ form dodecamers in solution and thus are similar to many other intracellular proteases which form large oligomeric complexes.

Full Text

The Full Text of this article is available as a PDF (340.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker T. A., Mizuuchi K. DNA-promoted assembly of the active tetramer of the Mu transposase. Genes Dev. 1992 Nov;6(11):2221–2232. doi: 10.1101/gad.6.11.2221. [DOI] [PubMed] [Google Scholar]
  2. Bass S., Gu Q., Christen A. Multicopy suppressors of prc mutant Escherichia coli include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA. J Bacteriol. 1996 Feb;178(4):1154–1161. doi: 10.1128/jb.178.4.1154-1161.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown B. M., Milla M. E., Smith T. L., Sauer R. T. Scanning mutagenesis of the Arc repressor as a functional probe of operator recognition. Nat Struct Biol. 1994 Mar;1(3):164–168. doi: 10.1038/nsb0394-164. [DOI] [PubMed] [Google Scholar]
  4. Goldberg A. L. The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur J Biochem. 1992 Jan 15;203(1-2):9–23. doi: 10.1111/j.1432-1033.1992.tb19822.x. [DOI] [PubMed] [Google Scholar]
  5. Gottesman S., Maurizi M. R. Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol Rev. 1992 Dec;56(4):592–621. doi: 10.1128/mr.56.4.592-621.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hershko A., Ciechanover A. The ubiquitin system for protein degradation. Annu Rev Biochem. 1992;61:761–807. doi: 10.1146/annurev.bi.61.070192.003553. [DOI] [PubMed] [Google Scholar]
  7. Huang G. S., Oas T. G. Submillisecond folding of monomeric lambda repressor. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6878–6882. doi: 10.1073/pnas.92.15.6878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Keiler K. C., Sauer R. T. Sequence determinants of C-terminal substrate recognition by the Tsp protease. J Biol Chem. 1996 Feb 2;271(5):2589–2593. doi: 10.1074/jbc.271.5.2589. [DOI] [PubMed] [Google Scholar]
  9. Keiler K. C., Waller P. R., Sauer R. T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science. 1996 Feb 16;271(5251):990–993. doi: 10.1126/science.271.5251.990. [DOI] [PubMed] [Google Scholar]
  10. Kessel M., Maurizi M. R., Kim B., Kocsis E., Trus B. L., Singh S. K., Steven A. C. Homology in structural organization between E. coli ClpAP protease and the eukaryotic 26 S proteasome. J Mol Biol. 1995 Jul 28;250(5):587–594. doi: 10.1006/jmbi.1995.0400. [DOI] [PubMed] [Google Scholar]
  11. Kolmar H., Ferrando E., Hennecke F., Wippler J., Fritz H. J. General mutagenesis/gene expression procedure for the construction of variant immunoglobulin domains in Escherichia coli. Production of the Bence-Jones protein REIv via fusion to beta-lactamase. J Mol Biol. 1992 Nov 20;228(2):359–365. doi: 10.1016/0022-2836(92)90826-6. [DOI] [PubMed] [Google Scholar]
  12. Kolmar H., Frisch C., Götze K., Fritz H. J. Immunoglobulin mutant library genetically screened for folding stability exploiting bacterial signal transduction. J Mol Biol. 1995 Aug 25;251(4):471–476. doi: 10.1006/jmbi.1995.0448. [DOI] [PubMed] [Google Scholar]
  13. Lipinska B., Fayet O., Baird L., Georgopoulos C. Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures. J Bacteriol. 1989 Mar;171(3):1574–1584. doi: 10.1128/jb.171.3.1574-1584.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lipinska B., Sharma S., Georgopoulos C. Sequence analysis and regulation of the htrA gene of Escherichia coli: a sigma 32-independent mechanism of heat-inducible transcription. Nucleic Acids Res. 1988 Nov 11;16(21):10053–10067. doi: 10.1093/nar/16.21.10053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lipinska B., Zylicz M., Georgopoulos C. The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase. J Bacteriol. 1990 Apr;172(4):1791–1797. doi: 10.1128/jb.172.4.1791-1797.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Löwe J., Stock D., Jap B., Zwickl P., Baumeister W., Huber R. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science. 1995 Apr 28;268(5210):533–539. doi: 10.1126/science.7725097. [DOI] [PubMed] [Google Scholar]
  17. Maurizi M. R. Proteases and protein degradation in Escherichia coli. Experientia. 1992 Feb 15;48(2):178–201. doi: 10.1007/BF01923511. [DOI] [PubMed] [Google Scholar]
  18. Milla M. E., Brown B. M., Sauer R. T. P22 Arc repressor: enhanced expression of unstable mutants by addition of polar C-terminal sequences. Protein Sci. 1993 Dec;2(12):2198–2205. doi: 10.1002/pro.5560021219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Milla M. E., Brown B. M., Sauer R. T. Protein stability effects of a complete set of alanine substitutions in Arc repressor. Nat Struct Biol. 1994 Aug;1(8):518–523. doi: 10.1038/nsb0894-518. [DOI] [PubMed] [Google Scholar]
  20. Milla M. E., Sauer R. T. Critical side-chain interactions at a subunit interface in the Arc repressor dimer. Biochemistry. 1995 Mar 14;34(10):3344–3351. doi: 10.1021/bi00010a025. [DOI] [PubMed] [Google Scholar]
  21. Milla M. E., Sauer R. T. P22 Arc repressor: folding kinetics of a single-domain, dimeric protein. Biochemistry. 1994 Feb 8;33(5):1125–1133. doi: 10.1021/bi00171a011. [DOI] [PubMed] [Google Scholar]
  22. Ostoa-Saloma P., Ramirez J., Perez-Montfort R. Causes of the decrease in fluorescence due to proteolysis of alpha-casein. Biochim Biophys Acta. 1990 Nov 15;1041(2):146–152. doi: 10.1016/0167-4838(90)90058-n. [DOI] [PubMed] [Google Scholar]
  23. Pabo C. O., Lewis M. The operator-binding domain of lambda repressor: structure and DNA recognition. Nature. 1982 Jul 29;298(5873):443–447. doi: 10.1038/298443a0. [DOI] [PubMed] [Google Scholar]
  24. Parsell D. A., Silber K. R., Sauer R. T. Carboxy-terminal determinants of intracellular protein degradation. Genes Dev. 1990 Feb;4(2):277–286. doi: 10.1101/gad.4.2.277. [DOI] [PubMed] [Google Scholar]
  25. Raumann B. E., Rould M. A., Pabo C. O., Sauer R. T. DNA recognition by beta-sheets in the Arc repressor-operator crystal structure. Nature. 1994 Feb 24;367(6465):754–757. doi: 10.1038/367754a0. [DOI] [PubMed] [Google Scholar]
  26. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  27. Seol J. H., Woo S. K., Jung E. M., Yoo S. J., Lee C. S., Kim K. J., Tanaka K., Ichihara A., Ha D. B., Chung C. H. Protease Do is essential for survival of Escherichia coli at high temperatures: its identity with the htrA gene product. Biochem Biophys Res Commun. 1991 Apr 30;176(2):730–736. doi: 10.1016/s0006-291x(05)80245-1. [DOI] [PubMed] [Google Scholar]
  28. Skórko-Glonek J., Krzewski K., Lipińska B., Bertoli E., Tanfani F. Comparison of the structure of wild-type HtrA heat shock protease and mutant HtrA proteins. A Fourier transform infrared spectroscopic study. J Biol Chem. 1995 May 12;270(19):11140–11146. doi: 10.1074/jbc.270.19.11140. [DOI] [PubMed] [Google Scholar]
  29. Strauch K. L., Beckwith J. An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1576–1580. doi: 10.1073/pnas.85.5.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Strauch K. L., Johnson K., Beckwith J. Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature. J Bacteriol. 1989 May;171(5):2689–2696. doi: 10.1128/jb.171.5.2689-2696.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Swamy K. H., Chung C. H., Goldberg A. L. Isolation and characterization of protease do from Escherichia coli, a large serine protease containing multiple subunits. Arch Biochem Biophys. 1983 Jul 15;224(2):543–554. doi: 10.1016/0003-9861(83)90242-4. [DOI] [PubMed] [Google Scholar]
  32. Waller P. R., Sauer R. T. Characterization of degQ and degS, Escherichia coli genes encoding homologs of the DegP protease. J Bacteriol. 1996 Feb;178(4):1146–1153. doi: 10.1128/jb.178.4.1146-1153.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Waxman L., Goldberg A. L. Selectivity of intracellular proteolysis: protein substrates activate the ATP-dependent protease (La). Science. 1986 Apr 25;232(4749):500–503. doi: 10.1126/science.2938257. [DOI] [PubMed] [Google Scholar]
  34. Wenzel T., Baumeister W. Conformational constraints in protein degradation by the 20S proteasome. Nat Struct Biol. 1995 Mar;2(3):199–204. doi: 10.1038/nsb0395-199. [DOI] [PubMed] [Google Scholar]
  35. Wlodawer A. Proteasome: a complex protease with a new fold and a distinct mechanism. Structure. 1995 May 15;3(5):417–420. doi: 10.1016/S0969-2126(01)00172-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES