Abstract
Pyruvate carboxylase (PYC), a biotin-dependent enzyme which catalyzes the conversion of pyruvate to oxaloacetate, was hypothesized to play an important anaplerotic role in the growth of Rhizobium etli during serial subcultivation in minimal media containing succinate (S. Encarnación, M. Dunn, K. Willms, and J. Mora, J. Bacteriol. 177:3058-3066, 1995). R. etli and R. tropici pyc::Tn5-mob mutants were selected for their inability to grow in minimal medium with pyruvate as a sole carbon source. During serial subcultivation in minimal medium containing 30 mM succinate, the R. etli parent and pyc mutant strains exhibited similar decreases in growth rate with each subculture. Supplementation of the medium with biotin prevented the growth decrease of the parent but not the mutant strain, indicating that PYC was necessary for the growth of R. etli under these conditions. The R. tropici pyc mutant grew normally in subcultures regardless of biotin supplementation. The symbiotic phenotypes of the pyc mutants from both species were similar to those of the parent strains. The R. etli pyc was cloned, sequenced, and found to encode a 126-kDa protein of 1,154 amino acids. The deduced amino acid sequence is highly homologous to other PYC sequences, and the catalytic domains involved in carboxylation, pyruvate binding, and biotinylation are conserved. The sequence and biochemical data show that the R. etli PYC is a member of the alpha4, homotetrameric, acetyl coenzyme A-activated class of PYCs.
Full Text
The Full Text of this article is available as a PDF (510.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-ssum R. M., White P. J. Activities of anaplerotic enzymes and acetyl coenzyme A carboxylase in biotin-deficient Bacillus megaterium. J Gen Microbiol. 1977 May;100(1):203–206. doi: 10.1099/00221287-100-1-203. [DOI] [PubMed] [Google Scholar]
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Attwood P. V. The structure and the mechanism of action of pyruvate carboxylase. Int J Biochem Cell Biol. 1995 Mar;27(3):231–249. doi: 10.1016/1357-2725(94)00087-r. [DOI] [PubMed] [Google Scholar]
- Beringer J. E. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol. 1974 Sep;84(1):188–198. doi: 10.1099/00221287-84-1-188. [DOI] [PubMed] [Google Scholar]
- Birch O. M., Fuhrmann M., Shaw N. M. Biotin synthase from Escherichia coli, an investigation of the low molecular weight and protein components required for activity in vitro. J Biol Chem. 1995 Aug 11;270(32):19158–19165. doi: 10.1074/jbc.270.32.19158. [DOI] [PubMed] [Google Scholar]
- Bravo A., Becerril B., Mora J. Introduction of the Escherichia coli gdhA gene into Rhizobium phaseoli: effect on nitrogen fixation. J Bacteriol. 1988 Feb;170(2):985–988. doi: 10.1128/jb.170.2.985-988.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bravo A., Mora J. Ammonium assimilation in Rhizobium phaseoli by the glutamine synthetase-glutamate synthase pathway. J Bacteriol. 1988 Feb;170(2):980–984. doi: 10.1128/jb.170.2.980-984.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bridger G. P., Sundaram T. K. Occurrence of phosphenolpyruvate carboxylase in the extremely thermophilic bacterium Thermus aquaticus. J Bacteriol. 1976 Mar;125(3):1211–1213. doi: 10.1128/jb.125.3.1211-1213.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cevallos M. A., Encarnación S., Leija A., Mora Y., Mora J. Genetic and physiological characterization of a Rhizobium etli mutant strain unable to synthesize poly-beta-hydroxybutyrate. J Bacteriol. 1996 Mar;178(6):1646–1654. doi: 10.1128/jb.178.6.1646-1654.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen N. D., Duc J. A., Beegen H., Utter M. F. Quaternary structure of pyruvate carboxylase from Pseudomonas citronellolis. J Biol Chem. 1979 Sep 25;254(18):9262–9269. [PubMed] [Google Scholar]
- Diesterhaft M. D., Freese E. Role of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and malic enzyme during growth and sporulation of Bacillus subtilis. J Biol Chem. 1973 Sep 10;248(17):6062–6070. [PubMed] [Google Scholar]
- Eckhardt T. A rapid method for the identification of plasmid desoxyribonucleic acid in bacteria. Plasmid. 1978 Sep;1(4):584–588. doi: 10.1016/0147-619x(78)90016-1. [DOI] [PubMed] [Google Scholar]
- Encarnación S., Dunn M., Willms K., Mora J. Fermentative and aerobic metabolism in Rhizobium etli. J Bacteriol. 1995 Jun;177(11):3058–3066. doi: 10.1128/jb.177.11.3058-3066.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Figurski D. H., Helinski D. R. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1648–1652. doi: 10.1073/pnas.76.4.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedman A. M., Long S. R., Brown S. E., Buikema W. J., Ausubel F. M. Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene. 1982 Jun;18(3):289–296. doi: 10.1016/0378-1119(82)90167-6. [DOI] [PubMed] [Google Scholar]
- Fry D. C., Kuby S. A., Mildvan A. S. ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins. Proc Natl Acad Sci U S A. 1986 Feb;83(4):907–911. doi: 10.1073/pnas.83.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garfin D. E. One-dimensional gel electrophoresis. Methods Enzymol. 1990;182:425–441. doi: 10.1016/0076-6879(90)82035-z. [DOI] [PubMed] [Google Scholar]
- Gloeckler R., Ohsawa I., Speck D., Ledoux C., Bernard S., Zinsius M., Villeval D., Kisou T., Kamogawa K., Lemoine Y. Cloning and characterization of the Bacillus sphaericus genes controlling the bioconversion of pimelate into dethiobiotin. Gene. 1990 Mar 1;87(1):63–70. doi: 10.1016/0378-1119(90)90496-e. [DOI] [PubMed] [Google Scholar]
- Gold L. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem. 1988;57:199–233. doi: 10.1146/annurev.bi.57.070188.001215. [DOI] [PubMed] [Google Scholar]
- Goss J. A., Cohen N. D., Utter M. F. Characterization of the subunit structure of pyruvate carboxylase from Pseudomonas citronellolis. J Biol Chem. 1981 Nov 25;256(22):11819–11825. [PubMed] [Google Scholar]
- Higa A. I., Milrad de Forchetti S. R., Cazzulo J. J. CO2-fixing enzymes in Pseudomonas fluorescens. J Gen Microbiol. 1976 Mar;93(1):69–74. doi: 10.1099/00221287-93-1-69. [DOI] [PubMed] [Google Scholar]
- Knowles J. R. The mechanism of biotin-dependent enzymes. Annu Rev Biochem. 1989;58:195–221. doi: 10.1146/annurev.bi.58.070189.001211. [DOI] [PubMed] [Google Scholar]
- Kumar G. K., Haase F. C., Phillips N. F., Wood H. G. Involvement and identification of a tryptophanyl residue at the pyruvate binding site of transcarboxylase. Biochemistry. 1988 Aug 9;27(16):5978–5983. doi: 10.1021/bi00416a022. [DOI] [PubMed] [Google Scholar]
- Lamhonwah A. M., Quan F., Gravel R. A. Sequence homology around the biotin-binding site of human propionyl-CoA carboxylase and pyruvate carboxylase. Arch Biochem Biophys. 1987 May 1;254(2):631–636. doi: 10.1016/0003-9861(87)90146-9. [DOI] [PubMed] [Google Scholar]
- Li S. J., Cronan J. E., Jr The gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-CoA carboxylase. J Biol Chem. 1992 Jan 15;267(2):855–863. [PubMed] [Google Scholar]
- Libor S., Sundaram T. K., Warwick R., Chapman J. A., Grundy S. M. Pyruvate carboxylase from a thermophilic Bacillus: some molecular characteristics. Biochemistry. 1979 Aug 21;18(17):3647–3653. doi: 10.1021/bi00584a001. [DOI] [PubMed] [Google Scholar]
- Lim F., Morris C. P., Occhiodoro F., Wallace J. C. Sequence and domain structure of yeast pyruvate carboxylase. J Biol Chem. 1988 Aug 15;263(23):11493–11497. [PubMed] [Google Scholar]
- Maloy W. L., Bowien B. U., Zwolinski G. K., Kumar K. G., Wood H. G., Ericsson L. H., Walsh K. A. Amino acid sequence of the biotinyl subunit from transcarboxylase. J Biol Chem. 1979 Nov 25;254(22):11615–11622. [PubMed] [Google Scholar]
- Martínez E., Palacios R., Sánchez F. Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J Bacteriol. 1987 Jun;169(6):2828–2834. doi: 10.1128/jb.169.6.2828-2834.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McAlister L. E., Evans E. L., Smith T. E. Properties of a mutant Escherichia coli phosphoenolpyruvate carboxylase deficient in coregulation by intermediary metabolites. J Bacteriol. 1981 Apr;146(1):200–208. doi: 10.1128/jb.146.1.200-208.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milrad de Forchetti S. R., Cazzulo J. J. Some properties of the pyruvate carboxylase from Pseudomonas fluorescens. J Gen Microbiol. 1976 Mar;93(1):75–81. doi: 10.1099/00221287-93-1-75. [DOI] [PubMed] [Google Scholar]
- Modak H. V., Kelly D. J. Acetyl-CoA-dependent pyruvate carboxylase from the photosynthetic bacterium Rhodobacter capsulatus: rapid and efficient purification using dye-ligand affinity chromatography. Microbiology. 1995 Oct;141(Pt 10):2619–2628. doi: 10.1099/13500872-141-10-2619. [DOI] [PubMed] [Google Scholar]
- Muramatsu S., Mizuno T. Nucleotide sequence of the fabE gene and flanking regions containing a bent DNA sequence of Escherichia coli. Nucleic Acids Res. 1989 May 25;17(10):3982–3982. doi: 10.1093/nar/17.10.3982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myers D. E., Tolbert B., Utter M. F. Activation of yeast pyruvate carboxylase: interactions between acyl coenzyme A compounds, aspartate, and substrates of the reaction. Biochemistry. 1983 Oct 25;22(22):5090–5096. doi: 10.1021/bi00291a007. [DOI] [PubMed] [Google Scholar]
- Nyunoya H., Broglie K. E., Widgren E. E., Lusty C. J. Characterization and derivation of the gene coding for mitochondrial carbamyl phosphate synthetase I of rat. J Biol Chem. 1985 Aug 5;260(16):9346–9356. [PubMed] [Google Scholar]
- O'Brien R., Chuang D. T., Taylor B. L., Utter M. F. Novel enzymic machinery for the metabolism of oxalacetate, phosphoenolpyruvate, and pyruvate in Pseudomonas citronellolis. J Biol Chem. 1977 Feb 25;252(4):1257–1263. [PubMed] [Google Scholar]
- Payne J., Morris J. G. Pyruvate carboxylase in Rhodopseudomonas spheroides. J Gen Microbiol. 1969 Nov;59(1):97–101. doi: 10.1099/00221287-59-1-97. [DOI] [PubMed] [Google Scholar]
- Post L. E., Post D. J., Raushel F. M. Dissection of the functional domains of Escherichia coli carbamoyl phosphate synthetase by site-directed mutagenesis. J Biol Chem. 1990 May 15;265(14):7742–7747. [PubMed] [Google Scholar]
- Renner E. D., Bernlohr R. W. Characterization and regulation of pyruvate carboxylase of Bacillus licheniformis. J Bacteriol. 1972 Feb;109(2):764–772. doi: 10.1128/jb.109.2.764-772.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Samols D., Thornton C. G., Murtif V. L., Kumar G. K., Haase F. C., Wood H. G. Evolutionary conservation among biotin enzymes. J Biol Chem. 1988 May 15;263(14):6461–6464. [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scrutton M. C. Fine control of the conversion of pyruvate (phosphoenolypyruvate) to oxaloacetate in various species. FEBS Lett. 1978 May 1;89(1):1–9. doi: 10.1016/0014-5793(78)80510-9. [DOI] [PubMed] [Google Scholar]
- Scrutton M. C., Taylor B. L. Isolation and characterization of pyruvate carboxylase from Azotobacter vinelandii OP. Arch Biochem Biophys. 1974 Oct;164(2):641–654. doi: 10.1016/0003-9861(74)90076-9. [DOI] [PubMed] [Google Scholar]
- Simon R. High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet. 1984;196(3):413–420. doi: 10.1007/BF00436188. [DOI] [PubMed] [Google Scholar]
- Streit W. R., Joseph C. M., Phillips D. A. Biotin and other water-soluble vitamins are key growth factors for alfalfa root colonization by Rhizobium meliloti 1021. Mol Plant Microbe Interact. 1996 Jul;9(5):330–338. doi: 10.1094/mpmi-9-0330. [DOI] [PubMed] [Google Scholar]
- Taylor B. L., Routman S., Utter M. F. The control of the synthesis of pyruvate carboxylase in Pseudomonas citronellolis. Evience from double labeling studies. J Biol Chem. 1975 Mar 25;250(6):2376–2382. [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thornton C. G., Kumar G. K., Shenoy B. C., Haase F. C., Phillips N. F., Park V. M., Magner W. J., Hejlik D. P., Wood H. G., Samols D. Primary structure of the 5 S subunit of transcarboxylase as deduced from the genomic DNA sequence. FEBS Lett. 1993 Sep 13;330(2):191–196. doi: 10.1016/0014-5793(93)80271-u. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wexler I. D., Du Y., Lisgaris M. V., Mandal S. K., Freytag S. O., Yang B. S., Liu T. C., Kwon M., Patel M. S., Kerr D. S. Primary amino acid sequence and structure of human pyruvate carboxylase. Biochim Biophys Acta. 1994 Oct 21;1227(1-2):46–52. doi: 10.1016/0925-4439(94)90105-8. [DOI] [PubMed] [Google Scholar]