Abstract
BACKGROUND: Pregnant women acutely infected with human parvovirus B19 (B19) may transmit the virus to the developing fetus. The mechanism whereby the virus interacts with the placenta is unknown. It is known that globoside receptor is required for successful infection of the target cells, which are the highly undifferentiated, actively dividing colony and burst-form units of the erythroid series. Globoside is present on trophoblast cells which have intimate contact with maternal blood, and may therefore serve as a potential route for B19 transmission into the fetal compartment. OBJECTIVES: The purpose of this study was to determine whether B19 VP2 capsids could bind to villous trophoblast cells in vitro and whether globoside was involved. METHODS: Binding of B19 VP2 empty capsid to first-trimester villous trophoblast cells was assessed by multiple approaches, including ICC using either biotinylated B19 VP2 empty capsid or unlabeled B19 VP2 empty capsid. Quantification of viral binding involved I125-labeled B19 VP2 empty capsid. Competition studies included excess unlabeled empty capsids or pretreatment with globoside-specific IgM antibody. RESULTS: Linear binding of B19 VP2 capsid to purified villous trophoblast cells in vitro was clearly demonstrated (R2= 0.9524). Competition studies revealed specificity of I125-labeled B19 VP2 capsid binding to villous trophoblast cells when pretreatment with either 60-fold excess unlabeled B19 capsid or globoside-specific IgM antibody took place. The results illustrated B19's ability to bind in a specific manner to globoside-containing villous trophoblast cells. CONCLUSION: We speculate that the globoside present on trophoblast cells may play a role in viral binding in vivo, which may facilitate B19 transmission across the maternal-fetal interface.
Full Text
The Full Text of this article is available as a PDF (242.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agbandje M., Kajigaya S., McKenna R., Young N. S., Rossmann M. G. The structure of human parvovirus B19 at 8 A resolution. Virology. 1994 Aug 15;203(1):106–115. doi: 10.1006/viro.1994.1460. [DOI] [PubMed] [Google Scholar]
- Anand A., Gray E. S., Brown T., Clewley J. P., Cohen B. J. Human parvovirus infection in pregnancy and hydrops fetalis. N Engl J Med. 1987 Jan 22;316(4):183–186. doi: 10.1056/NEJM198701223160403. [DOI] [PubMed] [Google Scholar]
- Berry P. J., Gray E. S., Porter H. J., Burton P. A. Parvovirus infection of the human fetus and newborn. Semin Diagn Pathol. 1992 Feb;9(1):4–12. [PubMed] [Google Scholar]
- Bright N. A., Ockleford C. D., Anwar M. Ontogeny and distribution of Fc gamma receptors in the human placenta. Transport or immune surveillance? J Anat. 1994 Apr;184(Pt 2):297–308. [PMC free article] [PubMed] [Google Scholar]
- Brown K. E., Anderson S. M., Young N. S. Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science. 1993 Oct 1;262(5130):114–117. doi: 10.1126/science.8211117. [DOI] [PubMed] [Google Scholar]
- Brown K. E., Cohen B. J. Haemagglutination by parvovirus B19. J Gen Virol. 1992 Aug;73(Pt 8):2147–2149. doi: 10.1099/0022-1317-73-8-2147. [DOI] [PubMed] [Google Scholar]
- Brown K. E., Hibbs J. R., Gallinella G., Anderson S. M., Lehman E. D., McCarthy P., Young N. S. Resistance to parvovirus B19 infection due to lack of virus receptor (erythrocyte P antigen). N Engl J Med. 1994 Apr 28;330(17):1192–1196. doi: 10.1056/NEJM199404283301704. [DOI] [PubMed] [Google Scholar]
- Caulín C., Salvesen G. S., Oshima R. G. Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J Cell Biol. 1997 Sep 22;138(6):1379–1394. doi: 10.1083/jcb.138.6.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chisaka Hiroshi, Morita Eiji, Murata Kazuko, Ishii Naoto, Yaegashi Nobuo, Okamura Kunihiro, Sugamura Kazuo. A transgenic mouse model for non-immune hydrops fetalis induced by the NS1 gene of human parvovirus B19. J Gen Virol. 2002 Feb;83(Pt 2):273–281. doi: 10.1099/0022-1317-83-2-273. [DOI] [PubMed] [Google Scholar]
- Cooling L. L., Koerner T. A., Naides S. J. Multiple glycosphingolipids determine the tissue tropism of parvovirus B19. J Infect Dis. 1995 Nov;172(5):1198–1205. doi: 10.1093/infdis/172.5.1198. [DOI] [PubMed] [Google Scholar]
- Cossart Y. E., Field A. M., Cant B., Widdows D. Parvovirus-like particles in human sera. Lancet. 1975 Jan 11;1(7898):72–73. doi: 10.1016/s0140-6736(75)91074-0. [DOI] [PubMed] [Google Scholar]
- Cotmore S. F., McKie V. C., Anderson L. J., Astell C. R., Tattersall P. Identification of the major structural and nonstructural proteins encoded by human parvovirus B19 and mapping of their genes by procaryotic expression of isolated genomic fragments. J Virol. 1986 Nov;60(2):548–557. doi: 10.1128/jvi.60.2.548-557.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cotmore S. F., Tattersall P. Characterization and molecular cloning of a human parvovirus genome. Science. 1984 Dec 7;226(4679):1161–1165. doi: 10.1126/science.6095448. [DOI] [PubMed] [Google Scholar]
- Damsky C. H., Fisher S. J. Trophoblast pseudo-vasculogenesis: faking it with endothelial adhesion receptors. Curr Opin Cell Biol. 1998 Oct;10(5):660–666. doi: 10.1016/s0955-0674(98)80043-4. [DOI] [PubMed] [Google Scholar]
- Douglas G. C., King B. F. Isolation of pure villous cytotrophoblast from term human placenta using immunomagnetic microspheres. J Immunol Methods. 1989 May 12;119(2):259–268. doi: 10.1016/0022-1759(89)90405-5. [DOI] [PubMed] [Google Scholar]
- GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jordan J. A., Butchko A. R. Apoptotic activity in villous trophoblast cells during B19 infection correlates with clinical outcome: assessment by the caspase-related M30 Cytodeath antibody. Placenta. 2002 Aug;23(7):547–553. doi: 10.1053/plac.2002.0843. [DOI] [PubMed] [Google Scholar]
- Jordan J. A., DeLoia J. A. Globoside expression within the human placenta. Placenta. 1999 Jan;20(1):103–108. doi: 10.1053/plac.1998.0353. [DOI] [PubMed] [Google Scholar]
- Jordan J. A. Identification of human parvovirus B19 infection in idiopathic nonimmune hydrops fetalis. Am J Obstet Gynecol. 1996 Jan;174(1 Pt 1):37–42. doi: 10.1016/s0002-9378(96)70370-8. [DOI] [PubMed] [Google Scholar]
- Kadyrov M., Kaufmann P., Huppertz B. Expression of a cytokeratin 18 neo-epitope is a specific marker for trophoblast apoptosis in human placenta. Placenta. 2001 Jan;22(1):44–48. doi: 10.1053/plac.2000.0616. [DOI] [PubMed] [Google Scholar]
- Kliman H. J., Nestler J. E., Sermasi E., Sanger J. M., Strauss J. F., 3rd Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology. 1986 Apr;118(4):1567–1582. doi: 10.1210/endo-118-4-1567. [DOI] [PubMed] [Google Scholar]
- Lindton B., Tolfvenstam T., Norbeck O., Markling L., Ringdén O., Westgren M., Broliden K. Recombinant parvovirus B19 empty capsids inhibit fetal hematopoietic colony formation in vitro. Fetal Diagn Ther. 2001 Jan-Feb;16(1):26–31. doi: 10.1159/000053876. [DOI] [PubMed] [Google Scholar]
- Moffatt S., Yaegashi N., Tada K., Tanaka N., Sugamura K. Human parvovirus B19 nonstructural (NS1) protein induces apoptosis in erythroid lineage cells. J Virol. 1998 Apr;72(4):3018–3028. doi: 10.1128/jvi.72.4.3018-3028.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morey A. L., Ferguson D. J., Fleming K. A. Ultrastructural features of fetal erythroid precursors infected with parvovirus B19 in vitro: evidence of cell death by apoptosis. J Pathol. 1993 Feb;169(2):213–220. doi: 10.1002/path.1711690207. [DOI] [PubMed] [Google Scholar]
- Morita E., Tada K., Chisaka H., Asao H., Sato H., Yaegashi N., Sugamura K. Human parvovirus B19 induces cell cycle arrest at G(2) phase with accumulation of mitotic cyclins. J Virol. 2001 Aug;75(16):7555–7563. doi: 10.1128/JVI.75.16.7555-7563.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mortimer P. P., Humphries R. K., Moore J. G., Purcell R. H., Young N. S. A human parvovirus-like virus inhibits haematopoietic colony formation in vitro. 1983 Mar 31-Apr 6Nature. 302(5907):426–429. doi: 10.1038/302426a0. [DOI] [PubMed] [Google Scholar]
- Ozawa K., Ayub J., Hao Y. S., Kurtzman G., Shimada T., Young N. Novel transcription map for the B19 (human) pathogenic parvovirus. J Virol. 1987 Aug;61(8):2395–2406. doi: 10.1128/jvi.61.8.2395-2406.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer M. E., Watson A. L., Burton G. J. Morphological analysis of degeneration and regeneration of syncytiotrophoblast in first trimester placental villi during organ culture. Hum Reprod. 1997 Feb;12(2):379–382. doi: 10.1093/humrep/12.2.379. [DOI] [PubMed] [Google Scholar]
- Serke S., Schwarz T. F., Baurmann H., Kirsch A., Hottenträger B., Von Brunn A., Roggendorf M., Huhn D., Deinhardt F. Productive infection of in vitro generated haemopoietic progenitor cells from normal human adult peripheral blood with parvovirus B19: studies by morphology, immunocytochemistry, flow-cytometry and DNA-hybridization. Br J Haematol. 1991 Sep;79(1):6–13. doi: 10.1111/j.1365-2141.1991.tb07999.x. [DOI] [PubMed] [Google Scholar]
- Shade R. O., Blundell M. C., Cotmore S. F., Tattersall P., Astell C. R. Nucleotide sequence and genome organization of human parvovirus B19 isolated from the serum of a child during aplastic crisis. J Virol. 1986 Jun;58(3):921–936. doi: 10.1128/jvi.58.3.921-936.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimomura S., Komatsu N., Frickhofen N., Anderson S., Kajigaya S., Young N. S. First continuous propagation of B19 parvovirus in a cell line. Blood. 1992 Jan 1;79(1):18–24. [PubMed] [Google Scholar]
- Srivastava C. H., Zhou S., Munshi N. C., Srivastava A. Parvovirus B19 replication in human umbilical cord blood cells. Virology. 1992 Aug;189(2):456–461. doi: 10.1016/0042-6822(92)90569-b. [DOI] [PubMed] [Google Scholar]
- Takahashi T., Ozawa K., Takahashi K., Asano S., Takaku F. Susceptibility of human erythropoietic cells to B19 parvovirus in vitro increases with differentiation. Blood. 1990 Feb 1;75(3):603–610. [PubMed] [Google Scholar]
- Weigel-Kelley K. A., Yoder M. C., Srivastava A. Recombinant human parvovirus B19 vectors: erythrocyte P antigen is necessary but not sufficient for successful transduction of human hematopoietic cells. J Virol. 2001 May;75(9):4110–4116. doi: 10.1128/JVI.75.9.4110-4116.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yaegashi N., Niinuma T., Chisaka H., Uehara S., Moffatt S., Tada K., Iwabuchi M., Matsunaga Y., Nakayama M., Yutani C. Parvovirus B19 infection induces apoptosis of erythroid cells in vitro and in vivo. J Infect. 1999 Jul;39(1):68–76. doi: 10.1016/s0163-4453(99)90105-6. [DOI] [PubMed] [Google Scholar]
- ZIPURSKY A. THE ERYTHROCYTES OF THE NEWBORN INFANT. Semin Hematol. 1965 Apr;2:167–203. [PubMed] [Google Scholar]
- von dem Borne A. E., Bos M. J., Joustra-Maas N., Tromp J. F., van't Veer M. B., van Wijngaarden-du Bois R., Tetteroo P. A. A murine monoclonal IgM antibody specific for blood group P antigen (globoside) Br J Haematol. 1986 May;63(1):35–46. doi: 10.1111/j.1365-2141.1986.tb07492.x. [DOI] [PubMed] [Google Scholar]