Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Oct;178(20):6013–6018. doi: 10.1128/jb.178.20.6013-6018.1996

Role of NAD in regulating the adhE gene of Escherichia coli.

M R Leonardo 1, Y Dailly 1, D P Clark 1
PMCID: PMC178460  PMID: 8830700

Abstract

The fermentative alcohol dehydrogenase of Escherichia coli is encoded by the adhE gene, which is induced under anaerobic conditions but repressed in air. Previous work suggested that induction of adhE might depend on NADH levels. We therefore directly measured the NAD+ and NADH levels for cultures growing aerobically and anaerobically on a series of carbon sources whose metabolism generates different relative amounts of NADH. Expression of adhE was monitored both by assay of alcohol dehydrogenase activity and by expression of phi(adhE'-lacZ) gene fusions. The expression of the adhE gene correlated with the ratio of NADH to NAD+. The role of NADH in eliciting adhE induction was supported by a variety of treatments known to change the ratio of NADH to NAD+ or alter the total NAD+-plus-NADH pool. Blocking the electron transport chain, either by mutation or by chemical inhibitors, resulted in the artificial induction of the adhE gene under aerobic conditions. Conversely, limiting NAD synthesis, by introducing mutational blocks into the biosynthetic pathway for nicotinic acid, decreased the expression of adhE under anaerobic conditions. This, in turn, was reversed by supplementation with exogenous NAD or nicotinic acid. In merodiploid strains carrying deletion or insertion mutations abolishing the synthesis of AdhE protein, an adhE-lacZ fusion was expressed at nearly 10-fold the level observed in an adhE+ background. Introduction of mutant adhE alleles producing high levels of inactive AdhE protein gave results equivalent to those seen in absence of the AdhE protein. This finding implies that it is the buildup of NADH due to lack of enzyme activity, rather than the absence of the AdhE protein per se, which causes increased induction of the phi(adhE'-lacZ) fusion. Moreover, mutations giving elevated levels of active AdhE protein decreased the induction of the phi(adhE'-lacZ) fusion. This finding suggests that the enzymatic activity of the AdhE protein modulates the level of NADH under anaerobic conditions, thus indirectly regulating its own expression.

Full Text

The Full Text of this article is available as a PDF (201.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alam K. Y., Clark D. P. Anaerobic fermentation balance of Escherichia coli as observed by in vivo nuclear magnetic resonance spectroscopy. J Bacteriol. 1989 Nov;171(11):6213–6217. doi: 10.1128/jb.171.11.6213-6217.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernofsky C., Swan M. An improved cycling assay for nicotinamide adenine dinucleotide. Anal Biochem. 1973 Jun;53(2):452–458. doi: 10.1016/0003-2697(73)90094-8. [DOI] [PubMed] [Google Scholar]
  3. Casse F., Pascal M. C., Chippaux M., Ratouchniak J. Genetic analysis of mutants from Escherichia coli K12 unable to grow anaerobically without exogenous acceptor. Mol Gen Genet. 1976 Nov 17;148(3):337–340. doi: 10.1007/BF00332908. [DOI] [PubMed] [Google Scholar]
  4. Chen Y. M., Lin E. C. Post-transcriptional control of L-1,2-propanediol oxidoreductase in the L-fucose pathway of Escherichia coli K-12. J Bacteriol. 1984 Jan;157(1):341–344. doi: 10.1128/jb.157.1.341-344.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chippaux M., Casse F., Pascal M. C. Isolation and phenotypes of mutants from Salmonella typhimurium defective in formate hydrogenlyase activity. J Bacteriol. 1972 May;110(2):766–768. doi: 10.1128/jb.110.2.766-768.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clark D. P., Rod M. L. Regulatory mutations that allow the growth of Escherichia coli on butanol as carbon source. J Mol Evol. 1987;25(2):151–158. doi: 10.1007/BF02101757. [DOI] [PubMed] [Google Scholar]
  7. Clark D. P. The fermentation pathways of Escherichia coli. FEMS Microbiol Rev. 1989 Sep;5(3):223–234. doi: 10.1016/0168-6445(89)90033-8. [DOI] [PubMed] [Google Scholar]
  8. Clark D., Cronan J. E., Jr Escherichia coli mutants with altered control of alcohol dehydrogenase and nitrate reductase. J Bacteriol. 1980 Jan;141(1):177–183. doi: 10.1128/jb.141.1.177-183.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cunningham P. R., Clark D. P. The use of suicide substrates to select mutants of Escherichia coli lacking enzymes of alcohol fermentation. Mol Gen Genet. 1986 Dec;205(3):487–493. doi: 10.1007/BF00338087. [DOI] [PubMed] [Google Scholar]
  10. Girbal L., Soucaille P. Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool. J Bacteriol. 1994 Nov;176(21):6433–6438. doi: 10.1128/jb.176.21.6433-6438.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goodlove P. E., Cunningham P. R., Parker J., Clark D. P. Cloning and sequence analysis of the fermentative alcohol-dehydrogenase-encoding gene of Escherichia coli. Gene. 1989 Dec 21;85(1):209–214. doi: 10.1016/0378-1119(89)90483-6. [DOI] [PubMed] [Google Scholar]
  12. Grupe H., Gottschalk G. Physiological Events in Clostridium acetobutylicum during the Shift from Acidogenesis to Solventogenesis in Continuous Culture and Presentation of a Model for Shift Induction. Appl Environ Microbiol. 1992 Dec;58(12):3896–3902. doi: 10.1128/aem.58.12.3896-3902.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harrison D. E., Chance B. Fluorimetric technique for monitoring changes in the level of reduced nicotinamide nucleotides in continuous cultures of microorganisms. Appl Microbiol. 1970 Mar;19(3):446–450. doi: 10.1128/am.19.3.446-450.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harrison D. E. Undamped oscillations of pyridine nucleotide and oxygen tension in chemostat cultures of Klebsiella aerogenes. J Cell Biol. 1970 Jun;45(3):514–521. doi: 10.1083/jcb.45.3.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heber U. W., Santarius K. A. Compartmentation and reduction of pyridine nucleotides in relation to photosynthesis. Biochim Biophys Acta. 1965 Nov 29;109(2):390–408. doi: 10.1016/0926-6585(65)90166-4. [DOI] [PubMed] [Google Scholar]
  16. Holley E. A., Spector M. P., Foster J. W. Regulation of NAD biosynthesis in Salmonella typhimurium: expression of nad-lac gene fusions and identification of a nad regulatory locus. J Gen Microbiol. 1985 Oct;131(10):2759–2770. doi: 10.1099/00221287-131-10-2759. [DOI] [PubMed] [Google Scholar]
  17. Ingledew W. J., Poole R. K. The respiratory chains of Escherichia coli. Microbiol Rev. 1984 Sep;48(3):222–271. doi: 10.1128/mr.48.3.222-271.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kessler D., Herth W., Knappe J. Ultrastructure and pyruvate formate-lyase radical quenching property of the multienzymic AdhE protein of Escherichia coli. J Biol Chem. 1992 Sep 5;267(25):18073–18079. [PubMed] [Google Scholar]
  19. Kessler D., Leibrecht I., Knappe J. Pyruvate-formate-lyase-deactivase and acetyl-CoA reductase activities of Escherichia coli reside on a polymeric protein particle encoded by adhE. FEBS Lett. 1991 Apr 9;281(1-2):59–63. doi: 10.1016/0014-5793(91)80358-a. [DOI] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Leonardo M. R., Clark D. P. Locations of genes in the nar-adhE region of the Escherichia coli K-12 chromosome. J Bacteriol. 1991 Mar;173(5):1574–1575. doi: 10.1128/jb.173.5.1574-1575.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Leonardo M. R., Cunningham P. R., Clark D. P. Anaerobic regulation of the adhE gene, encoding the fermentative alcohol dehydrogenase of Escherichia coli. J Bacteriol. 1993 Feb;175(3):870–878. doi: 10.1128/jb.175.3.870-878.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. London J., Knight M. Concentrations of nicotinamide nucleotide coenzymes in micro-organisms. J Gen Microbiol. 1966 Aug;44(2):241–254. doi: 10.1099/00221287-44-2-241. [DOI] [PubMed] [Google Scholar]
  24. Lorowitz W., Clark D. Escherichia coli mutants with a temperature-sensitive alcohol dehydrogenase. J Bacteriol. 1982 Nov;152(2):935–938. doi: 10.1128/jb.152.2.935-938.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Smith M. W., Neidhardt F. C. Proteins induced by anaerobiosis in Escherichia coli. J Bacteriol. 1983 Apr;154(1):336–343. doi: 10.1128/jb.154.1.336-343.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  27. Vasconcelos I., Girbal L., Soucaille P. Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol. 1994 Mar;176(5):1443–1450. doi: 10.1128/jb.176.5.1443-1450.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wall D., Delaney J. M., Fayet O., Lipinska B., Yamamoto T., Georgopoulos C. arc-dependent thermal regulation and extragenic suppression of the Escherichia coli cytochrome d operon. J Bacteriol. 1992 Oct;174(20):6554–6562. doi: 10.1128/jb.174.20.6554-6562.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wimpenny J. W., Firth A. Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen. J Bacteriol. 1972 Jul;111(1):24–32. doi: 10.1128/jb.111.1.24-32.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Winkelman J. W., Clark D. P. Anaerobically induced genes of Escherichia coli. J Bacteriol. 1986 Jul;167(1):362–367. doi: 10.1128/jb.167.1.362-367.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES