Abstract
Endogenous ADP-ribosylation of two proteins with molecular weights of 30,000 (30K) and 80,000 (80K) was detected in cell extracts of Mycobacterium smegmatis. Modification of these proteins was enzymatic. The ADP-ribose bound to 30K was removed by HgCl2 but not by NH2OH, suggesting the modification of a cysteine residue. The ADP-ribose bound to 80K was not removed by either HgCl2 or NH2OH, which is consistent with the modification of an asparagine residue. ADP-ribosylation of 80K appeared to be reversible.
Full Text
The Full Text of this article is available as a PDF (334.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aktories K., Just I., Rosenthal W. Different types of ADP-ribose protein bonds formed by botulinum C2 toxin, botulinum ADP-ribosyltransferase C3 and pertussis toxin. Biochem Biophys Res Commun. 1988 Oct 14;156(1):361–367. doi: 10.1016/s0006-291x(88)80849-0. [DOI] [PubMed] [Google Scholar]
- Cervantes-Laurean D., Minter D. E., Jacobson E. L., Jacobson M. K. Protein glycation by ADP-ribose: studies of model conjugates. Biochemistry. 1993 Feb 16;32(6):1528–1534. doi: 10.1021/bi00057a017. [DOI] [PubMed] [Google Scholar]
- Davis W. B. Identification of a nicotinamide adenine dinucleotide glycohydrolase and an associated inhibitor in isoniazid-susceptible and -resistant Mycobacterium phlei. Antimicrob Agents Chemother. 1980 Apr;17(4):663–668. doi: 10.1128/aac.17.4.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faraone-Mennella M. R., De Lucia F., De Maio A., Gambacorta A., Quesada P., De Rosa M., Nicolaus B., Farina B. ADP-ribosylation reactions in Sulfolobus solfataricus, a thermoacidophilic archaeon. Biochim Biophys Acta. 1995 Jan 19;1246(2):151–159. doi: 10.1016/0167-4838(94)00169-h. [DOI] [PubMed] [Google Scholar]
- Frei B., Richter C. Mono(ADP-ribosylation) in rat liver mitochondria. Biochemistry. 1988 Jan 26;27(2):529–535. doi: 10.1021/bi00402a004. [DOI] [PubMed] [Google Scholar]
- Gopinathan K. P., Sirsi M., Vaidyanathan C. S. Nicotinamide-adenine dinucleotide glycohydrolase of Mycobacterium tuberculosis H37Rv. Biochem J. 1964 May;91(2):277–282. doi: 10.1042/bj0910277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilz H., Koch R., Fanick W., Klapproth K., Adamietz P. Nonenzymic ADP-ribosylation of specific mitochondrial polypeptides. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3929–3933. doi: 10.1073/pnas.81.13.3929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iglewski W. J. Cellular ADP-ribosylation of elongation factor 2. Mol Cell Biochem. 1994 Sep;138(1-2):131–133. doi: 10.1007/BF00928454. [DOI] [PubMed] [Google Scholar]
- Jacobson M. K., Loflin P. T., Aboul-Ela N., Mingmuang M., Moss J., Jobson E. L. Modification of plasma membrane protein cysteine residues by ADP-ribose in vivo. J Biol Chem. 1990 Jul 5;265(19):10825–10828. [PubMed] [Google Scholar]
- Just I., Wollenberg P., Moss J., Aktories K. Cysteine-specific ADP-ribosylation of actin. Eur J Biochem. 1994 May 1;221(3):1047–1054. doi: 10.1111/j.1432-1033.1994.tb18823.x. [DOI] [PubMed] [Google Scholar]
- KERN M., NATALE R. A diphosphopyridine nucleotidase and its protein inhibitor from Mycobacterium butyricum. J Biol Chem. 1958 Mar;231(1):41–51. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee M. H., Pascopella L., Jacobs W. R., Jr, Hatfull G. F. Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guérin. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3111–3115. doi: 10.1073/pnas.88.8.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y., Kahn M. L. ADP-ribosylation of Rhizobium meliloti glutamine synthetase III in vivo. J Biol Chem. 1995 Jan 27;270(4):1624–1628. doi: 10.1074/jbc.270.4.1624. [DOI] [PubMed] [Google Scholar]
- Ludden P. W. Reversible ADP-ribosylation as a mechanism of enzyme regulation in procaryotes. Mol Cell Biochem. 1994 Sep;138(1-2):123–129. doi: 10.1007/BF00928453. [DOI] [PubMed] [Google Scholar]
- Ludden P. W., Roberts G. P. Regulation of nitrogenase activity by reversible ADP ribosylation. Curr Top Cell Regul. 1989;30:23–56. doi: 10.1016/b978-0-12-152830-0.50004-9. [DOI] [PubMed] [Google Scholar]
- Maehama T., Sekine N., Nishina H., Takahashi K., Katada T. Characterization of botulinum C3-catalyzed ADP-ribosylation of rho proteins and identification of mammalian C3-like ADP-ribosyltransferase. Mol Cell Biochem. 1994 Sep;138(1-2):135–140. doi: 10.1007/BF00928455. [DOI] [PubMed] [Google Scholar]
- Obara S., Yamada K., Yoshimura Y., Shimoyama M. Evidence for the endogenous GTP-dependent ADP-ribosylation of the alpha-subunit of the stimulatory guanyl-nucleotide-binding protein concomitant with an increase in basal adenylyl cyclase activity in chicken spleen cell membrane. Eur J Biochem. 1991 Aug 15;200(1):75–80. doi: 10.1111/j.1432-1033.1991.tb21050.x. [DOI] [PubMed] [Google Scholar]
- Penyige A., Barabás G., Szabó I., Ensign J. C. ADP-ribosylation of membrane proteins of Streptomyces griseus strain 52-1. FEMS Microbiol Lett. 1990 Jun 1;57(3):293–297. doi: 10.1016/0378-1097(90)90083-3. [DOI] [PubMed] [Google Scholar]
- Sekine A., Fujiwara M., Narumiya S. Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem. 1989 May 25;264(15):8602–8605. [PubMed] [Google Scholar]
- Shah N. S., Mathur P. P., Martin S. P. Nicotinamide adenine dinucleotidase activity in experimental tuberculosis. Biochim Biophys Acta. 1966 Mar 28;117(1):263–265. doi: 10.1016/0304-4165(66)90176-0. [DOI] [PubMed] [Google Scholar]
- Shall S. ADP-ribosylation of proteins: a ubiquitous cellular control mechanism. Biochem Soc Trans. 1989 Apr;17(2):317–322. doi: 10.1042/bst0170317. [DOI] [PubMed] [Google Scholar]
- Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R., Jr Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol. 1990 Nov;4(11):1911–1919. doi: 10.1111/j.1365-2958.1990.tb02040.x. [DOI] [PubMed] [Google Scholar]
- Tanaka Y., Yoshihara K., Kamiya T. Enzymic and nonenzymic mono ADP-ribosylation of proteins in skeletal muscle. Biochem Biophys Res Commun. 1989 Sep 15;163(2):1063–1070. doi: 10.1016/0006-291x(89)92329-2. [DOI] [PubMed] [Google Scholar]
- Ueda K., Hayaishi O. ADP-ribosylation. Annu Rev Biochem. 1985;54:73–100. doi: 10.1146/annurev.bi.54.070185.000445. [DOI] [PubMed] [Google Scholar]
- Woehle D. L., Lueddecke B. A., Ludden P. W. ATP-dependent and NAD-dependent modification of glutamine synthetase from Rhodospirillum rubrum in vitro. J Biol Chem. 1990 Aug 15;265(23):13741–13749. [PubMed] [Google Scholar]