Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Oct;178(20):6074–6077. doi: 10.1128/jb.178.20.6074-6077.1996

Endogenous ADP-ribosylation of proteins in Mycobacterium smegmatis.

M H Serres 1, J C Ensign 1
PMCID: PMC178471  PMID: 8830711

Abstract

Endogenous ADP-ribosylation of two proteins with molecular weights of 30,000 (30K) and 80,000 (80K) was detected in cell extracts of Mycobacterium smegmatis. Modification of these proteins was enzymatic. The ADP-ribose bound to 30K was removed by HgCl2 but not by NH2OH, suggesting the modification of a cysteine residue. The ADP-ribose bound to 80K was not removed by either HgCl2 or NH2OH, which is consistent with the modification of an asparagine residue. ADP-ribosylation of 80K appeared to be reversible.

Full Text

The Full Text of this article is available as a PDF (334.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aktories K., Just I., Rosenthal W. Different types of ADP-ribose protein bonds formed by botulinum C2 toxin, botulinum ADP-ribosyltransferase C3 and pertussis toxin. Biochem Biophys Res Commun. 1988 Oct 14;156(1):361–367. doi: 10.1016/s0006-291x(88)80849-0. [DOI] [PubMed] [Google Scholar]
  2. Cervantes-Laurean D., Minter D. E., Jacobson E. L., Jacobson M. K. Protein glycation by ADP-ribose: studies of model conjugates. Biochemistry. 1993 Feb 16;32(6):1528–1534. doi: 10.1021/bi00057a017. [DOI] [PubMed] [Google Scholar]
  3. Davis W. B. Identification of a nicotinamide adenine dinucleotide glycohydrolase and an associated inhibitor in isoniazid-susceptible and -resistant Mycobacterium phlei. Antimicrob Agents Chemother. 1980 Apr;17(4):663–668. doi: 10.1128/aac.17.4.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Faraone-Mennella M. R., De Lucia F., De Maio A., Gambacorta A., Quesada P., De Rosa M., Nicolaus B., Farina B. ADP-ribosylation reactions in Sulfolobus solfataricus, a thermoacidophilic archaeon. Biochim Biophys Acta. 1995 Jan 19;1246(2):151–159. doi: 10.1016/0167-4838(94)00169-h. [DOI] [PubMed] [Google Scholar]
  5. Frei B., Richter C. Mono(ADP-ribosylation) in rat liver mitochondria. Biochemistry. 1988 Jan 26;27(2):529–535. doi: 10.1021/bi00402a004. [DOI] [PubMed] [Google Scholar]
  6. Gopinathan K. P., Sirsi M., Vaidyanathan C. S. Nicotinamide-adenine dinucleotide glycohydrolase of Mycobacterium tuberculosis H37Rv. Biochem J. 1964 May;91(2):277–282. doi: 10.1042/bj0910277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hilz H., Koch R., Fanick W., Klapproth K., Adamietz P. Nonenzymic ADP-ribosylation of specific mitochondrial polypeptides. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3929–3933. doi: 10.1073/pnas.81.13.3929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Iglewski W. J. Cellular ADP-ribosylation of elongation factor 2. Mol Cell Biochem. 1994 Sep;138(1-2):131–133. doi: 10.1007/BF00928454. [DOI] [PubMed] [Google Scholar]
  9. Jacobson M. K., Loflin P. T., Aboul-Ela N., Mingmuang M., Moss J., Jobson E. L. Modification of plasma membrane protein cysteine residues by ADP-ribose in vivo. J Biol Chem. 1990 Jul 5;265(19):10825–10828. [PubMed] [Google Scholar]
  10. Just I., Wollenberg P., Moss J., Aktories K. Cysteine-specific ADP-ribosylation of actin. Eur J Biochem. 1994 May 1;221(3):1047–1054. doi: 10.1111/j.1432-1033.1994.tb18823.x. [DOI] [PubMed] [Google Scholar]
  11. KERN M., NATALE R. A diphosphopyridine nucleotidase and its protein inhibitor from Mycobacterium butyricum. J Biol Chem. 1958 Mar;231(1):41–51. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Lee M. H., Pascopella L., Jacobs W. R., Jr, Hatfull G. F. Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guérin. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3111–3115. doi: 10.1073/pnas.88.8.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Liu Y., Kahn M. L. ADP-ribosylation of Rhizobium meliloti glutamine synthetase III in vivo. J Biol Chem. 1995 Jan 27;270(4):1624–1628. doi: 10.1074/jbc.270.4.1624. [DOI] [PubMed] [Google Scholar]
  15. Ludden P. W. Reversible ADP-ribosylation as a mechanism of enzyme regulation in procaryotes. Mol Cell Biochem. 1994 Sep;138(1-2):123–129. doi: 10.1007/BF00928453. [DOI] [PubMed] [Google Scholar]
  16. Ludden P. W., Roberts G. P. Regulation of nitrogenase activity by reversible ADP ribosylation. Curr Top Cell Regul. 1989;30:23–56. doi: 10.1016/b978-0-12-152830-0.50004-9. [DOI] [PubMed] [Google Scholar]
  17. Maehama T., Sekine N., Nishina H., Takahashi K., Katada T. Characterization of botulinum C3-catalyzed ADP-ribosylation of rho proteins and identification of mammalian C3-like ADP-ribosyltransferase. Mol Cell Biochem. 1994 Sep;138(1-2):135–140. doi: 10.1007/BF00928455. [DOI] [PubMed] [Google Scholar]
  18. Obara S., Yamada K., Yoshimura Y., Shimoyama M. Evidence for the endogenous GTP-dependent ADP-ribosylation of the alpha-subunit of the stimulatory guanyl-nucleotide-binding protein concomitant with an increase in basal adenylyl cyclase activity in chicken spleen cell membrane. Eur J Biochem. 1991 Aug 15;200(1):75–80. doi: 10.1111/j.1432-1033.1991.tb21050.x. [DOI] [PubMed] [Google Scholar]
  19. Penyige A., Barabás G., Szabó I., Ensign J. C. ADP-ribosylation of membrane proteins of Streptomyces griseus strain 52-1. FEMS Microbiol Lett. 1990 Jun 1;57(3):293–297. doi: 10.1016/0378-1097(90)90083-3. [DOI] [PubMed] [Google Scholar]
  20. Sekine A., Fujiwara M., Narumiya S. Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem. 1989 May 25;264(15):8602–8605. [PubMed] [Google Scholar]
  21. Shah N. S., Mathur P. P., Martin S. P. Nicotinamide adenine dinucleotidase activity in experimental tuberculosis. Biochim Biophys Acta. 1966 Mar 28;117(1):263–265. doi: 10.1016/0304-4165(66)90176-0. [DOI] [PubMed] [Google Scholar]
  22. Shall S. ADP-ribosylation of proteins: a ubiquitous cellular control mechanism. Biochem Soc Trans. 1989 Apr;17(2):317–322. doi: 10.1042/bst0170317. [DOI] [PubMed] [Google Scholar]
  23. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R., Jr Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol. 1990 Nov;4(11):1911–1919. doi: 10.1111/j.1365-2958.1990.tb02040.x. [DOI] [PubMed] [Google Scholar]
  24. Tanaka Y., Yoshihara K., Kamiya T. Enzymic and nonenzymic mono ADP-ribosylation of proteins in skeletal muscle. Biochem Biophys Res Commun. 1989 Sep 15;163(2):1063–1070. doi: 10.1016/0006-291x(89)92329-2. [DOI] [PubMed] [Google Scholar]
  25. Ueda K., Hayaishi O. ADP-ribosylation. Annu Rev Biochem. 1985;54:73–100. doi: 10.1146/annurev.bi.54.070185.000445. [DOI] [PubMed] [Google Scholar]
  26. Woehle D. L., Lueddecke B. A., Ludden P. W. ATP-dependent and NAD-dependent modification of glutamine synthetase from Rhodospirillum rubrum in vitro. J Biol Chem. 1990 Aug 15;265(23):13741–13749. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES