Abstract
Stress or heat shock proteins are constitutively expressed in normal CNS tissues in a variety of cell types (oligodendrocytes, astrocytes, and neurons). Their presence may protect cells from various stresses, such as hypoxia, anoxia, and excessive excitatory stimulation. Increased amounts of hsp are expressed in various cells of the CNS during acute toxic-metabolic states and in chronic degenerative and inflammatory diseases. Increased expression of hsp may lead to immune responses to these proteins. Antibodies to mycobacterial hsp bind to normal human myelin and to oligodendrocytes in regions of MS demyelination. Cellular immune responses to hsp occur with increased frequency and magnitude in persons with MS, especially those with recent onset of disease. In addition, there are populations of T cells expressing gamma/delta T cells in the brains and spinal fluids of persons with MS, suggesting an in situ immune response to hsps. Humoral immune responses to hsp are found in CSF, but no disease specificity has been documented. Some myelin proteins have sequence homology with particular hsps. One instance is the homology between a peptide of mycobacterial Hsp65 and the myelin protein CNP. Our data on EAE suggest that immune responses to either cross-reactive hsp epitopes or whole hsp can modify the course of both acute and chronic relapsing EAE. In addition, the severity and frequency of environmental exposure to infectious agents can modify the course of EAE, possibly by altering the patterns of immune response to hsp. Finally, tolerance to the small hsp, alpha B-crystallin, a putative autoantigen in persons with MS, alters the course of relapsing EAE, supporting its role in chronic, autoimmune CNS disease. Modifying immune responses to hsp may be a potential new treatment option for persons with MS.
Full Text
The Full Text of this article is available as a PDF (920.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allegretta M., Nicklas J. A., Sriram S., Albertini R. J. T cells responsive to myelin basic protein in patients with multiple sclerosis. Science. 1990 Feb 9;247(4943):718–721. doi: 10.1126/science.1689076. [DOI] [PubMed] [Google Scholar]
- Anderton S. M., van der Zee R., Goodacre J. A. Inflammation activates self hsp60-specific T cells. Eur J Immunol. 1993 Jan;23(1):33–38. doi: 10.1002/eji.1830230107. [DOI] [PubMed] [Google Scholar]
- Aquino D. A., Capello E., Weisstein J., Sanders V., Lopez C., Tourtellotte W. W., Brosnan C. F., Raine C. S., Norton W. T. Multiple sclerosis: altered expression of 70- and 27-kDa heat shock proteins in lesions and myelin. J Neuropathol Exp Neurol. 1997 Jun;56(6):664–672. [PubMed] [Google Scholar]
- Bajramović J. J., Lassmann H., van Noort J. M. Expression of alphaB-crystallin in glia cells during lesional development in multiple sclerosis. J Neuroimmunol. 1997 Sep;78(1-2):143–151. doi: 10.1016/s0165-5728(97)00092-1. [DOI] [PubMed] [Google Scholar]
- Baxevanis C. N., Reclos G. J., Servis C., Anastasopoulos E., Arsenis P., Katsiyiannis A., Matikas N., Lambris J. D., Papamichail M. Peptides of myelin basic protein stimulate T lymphocytes from patients with multiple sclerosis. J Neuroimmunol. 1989 Mar;22(1):23–30. doi: 10.1016/0165-5728(89)90005-2. [DOI] [PubMed] [Google Scholar]
- Birnbaum G., Kotilinek L., Albrecht L. Spinal fluid lymphocytes from a subgroup of multiple sclerosis patients respond to mycobacterial antigens. Ann Neurol. 1993 Jul;34(1):18–24. doi: 10.1002/ana.410340106. [DOI] [PubMed] [Google Scholar]
- Birnbaum G., Kotilinek L., Miller S. D., Raine C. S., Gao Y. L., Lehmann P. V., Gupta R. S. Heat shock proteins and experimental autoimmune encephalomyelitis. II: environmental infection and extra-neuraxial inflammation alter the course of chronic relapsing encephalomyelitis. J Neuroimmunol. 1998 Oct 1;90(2):149–161. doi: 10.1016/s0165-5728(98)00141-6. [DOI] [PubMed] [Google Scholar]
- Birnbaum G., Kotilinek L., Schlievert P., Clark H. B., Trotter J., Horvath E., Gao E., Cox M., Braun P. E. Heat shock proteins and experimental autoimmune encephalomyelitis (EAE): I. Immunization with a peptide of the myelin protein 2',3' cyclic nucleotide 3' phosphodiesterase that is cross-reactive with a heat shock protein alters the course of EAE. J Neurosci Res. 1996 May 15;44(4):381–396. doi: 10.1002/(SICI)1097-4547(19960515)44:4<381::AID-JNR10>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
- Cannella B., Raine C. S. The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol. 1995 Apr;37(4):424–435. doi: 10.1002/ana.410370404. [DOI] [PubMed] [Google Scholar]
- D'Souza S. D., Antel J. P., Freedman M. S. Cytokine induction of heat shock protein expression in human oligodendrocytes: an interleukin-1-mediated mechanism. J Neuroimmunol. 1994 Feb;50(1):17–24. doi: 10.1016/0165-5728(94)90210-0. [DOI] [PubMed] [Google Scholar]
- Dwyer B. E., Nishimura R. N., de Vellis J., Clegg K. B. Regulation of heat shock protein synthesis in rat astrocytes. J Neurosci Res. 1991 Mar;28(3):352–358. doi: 10.1002/jnr.490280306. [DOI] [PubMed] [Google Scholar]
- Freedman M. S., Buu N. N., Ruijs T. C., Williams K., Antel J. P. Differential expression of heat shock proteins by human glial cells. J Neuroimmunol. 1992 Dec;41(2):231–238. doi: 10.1016/0165-5728(92)90074-u. [DOI] [PubMed] [Google Scholar]
- Gao Y. L., Raine C. S., Brosnan C. F. Humoral response to hsp 65 in multiple sclerosis and other neurologic conditions. Neurology. 1994 May;44(5):941–946. doi: 10.1212/wnl.44.5.941. [DOI] [PubMed] [Google Scholar]
- Hafler D. A., Benjamin D. S., Burks J., Weiner H. L. Myelin basic protein and proteolipid protein reactivity of brain- and cerebrospinal fluid-derived T cell clones in multiple sclerosis and postinfectious encephalomyelitis. J Immunol. 1987 Jul 1;139(1):68–72. [PubMed] [Google Scholar]
- Hofman F. M., Hinton D. R., Johnson K., Merrill J. E. Tumor necrosis factor identified in multiple sclerosis brain. J Exp Med. 1989 Aug 1;170(2):607–612. doi: 10.1084/jem.170.2.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hvas J., Oksenberg J. R., Fernando R., Steinman L., Bernard C. C. Gamma delta T cell receptor repertoire in brain lesions of patients with multiple sclerosis. J Neuroimmunol. 1993 Jul;46(1-2):225–234. doi: 10.1016/0165-5728(93)90253-u. [DOI] [PubMed] [Google Scholar]
- Johnson D., Hafler D. A., Fallis R. J., Lees M. B., Brady R. O., Quarles R. H., Weiner H. L. Cell-mediated immunity to myelin-associated glycoprotein, proteolipid protein, and myelin basic protein in multiple sclerosis. J Neuroimmunol. 1986 Nov;13(1):99–108. doi: 10.1016/0165-5728(86)90053-6. [DOI] [PubMed] [Google Scholar]
- Jones D. B., Coulson A. F., Duff G. W. Sequence homologies between hsp60 and autoantigens. Immunol Today. 1993 Mar;14(3):115–118. doi: 10.1016/0167-5699(93)90210-C. [DOI] [PubMed] [Google Scholar]
- Kantengwa S., Donati Y. R., Clerget M., Maridonneau-Parini I., Sinclair F., Mariéthoz E., Perin M., Rees A. D., Slosman D. O., Polla B. S. Heat shock proteins: an autoprotective mechanism for inflammatory cells? Semin Immunol. 1991 Jan;3(1):49–56. [PubMed] [Google Scholar]
- Kaufmann S. H. Heat-shock proteins: a link between rheumatoid arthritis and infection? Curr Opin Rheumatol. 1990 Jun;2(3):430–435. [PubMed] [Google Scholar]
- Lamb J. R., Bal V., Mendez-Samperio P., Mehlert A., So A., Rothbard J., Jindal S., Young R. A., Young D. B. Stress proteins may provide a link between the immune response to infection and autoimmunity. Int Immunol. 1989;1(2):191–196. doi: 10.1093/intimm/1.2.191. [DOI] [PubMed] [Google Scholar]
- Lehmann P. V., Sercarz E. E., Forsthuber T., Dayan C. M., Gammon G. Determinant spreading and the dynamics of the autoimmune T-cell repertoire. Immunol Today. 1993 May;14(5):203–208. doi: 10.1016/0167-5699(93)90163-F. [DOI] [PubMed] [Google Scholar]
- Liblau R., Tournier-Lasserve E., Maciazek J., Dumas G., Siffert O., Hashim G., Bach M. A. T cell response to myelin basic protein epitopes in multiple sclerosis patients and healthy subjects. Eur J Immunol. 1991 Jun;21(6):1391–1395. doi: 10.1002/eji.1830210610. [DOI] [PubMed] [Google Scholar]
- Lin M. S., Chen Y. W. B cell differentiation. II. Isotype potential of a single B cell. Cell Immunol. 1993 Sep;150(2):343–352. doi: 10.1006/cimm.1993.1202. [DOI] [PubMed] [Google Scholar]
- Lisak R. P., Zweiman B. In vitro cell-mediated immunity of cerebrospinal-fluid lymphocytes to myelin basic protein in primary demyelinating diseases. N Engl J Med. 1977 Oct 20;297(16):850–853. doi: 10.1056/NEJM197710202971602. [DOI] [PubMed] [Google Scholar]
- Marini A. M., Kozuka M., Lipsky R. H., Nowak T. S., Jr 70-kilodalton heat shock protein induction in cerebellar astrocytes and cerebellar granule cells in vitro: comparison with immunocytochemical localization after hyperthermia in vivo. J Neurochem. 1990 May;54(5):1509–1516. doi: 10.1111/j.1471-4159.1990.tb01198.x. [DOI] [PubMed] [Google Scholar]
- McRae B. L., Vanderlugt C. L., Dal Canto M. C., Miller S. D. Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med. 1995 Jul 1;182(1):75–85. doi: 10.1084/jem.182.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mor F., Cohen I. R. T cells in the lesion of experimental autoimmune encephalomyelitis. Enrichment for reactivities to myelin basic protein and to heat shock proteins. J Clin Invest. 1992 Dec;90(6):2447–2455. doi: 10.1172/JCI116136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mustafa M., Vingsbo C., Olsson T., Ljungdahl A., Höjeberg B., Holmdahl R. The major histocompatibility complex influences myelin basic protein 63-88-induced T cell cytokine profile and experimental autoimmune encephalomyelitis. Eur J Immunol. 1993 Dec;23(12):3089–3095. doi: 10.1002/eji.1830231207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mutis T., Cornelisse Y. E., Datema G., van den Elsen P. J., Ottenhoff T. H., de Vries R. R. Definition of a human suppressor T-cell epitope. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9456–9460. doi: 10.1073/pnas.91.20.9456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mutis T., Kraakman E. M., Cornelisse Y. E., Haanen J. B., Spits H., De Vries R. R., Ottenhoff T. H. Analysis of cytokine production by Mycobacterium-reactive T cells. Failure to explain Mycobacterium leprae-specific nonresponsiveness of peripheral blood T cells from lepromatous leprosy patients. J Immunol. 1993 May 15;150(10):4641–4651. [PubMed] [Google Scholar]
- Panitch H. S. Influence of infection on exacerbations of multiple sclerosis. Ann Neurol. 1994;36 (Suppl):S25–S28. doi: 10.1002/ana.410360709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pette M., Fujita K., Kitze B., Whitaker J. N., Albert E., Kappos L., Wekerle H. Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology. 1990 Nov;40(11):1770–1776. doi: 10.1212/wnl.40.11.1770. [DOI] [PubMed] [Google Scholar]
- Prabhakar S., Kurien E., Gupta R. S., Zielinski S., Freedman M. S. Heat shock protein immunoreactivity in CSF: correlation with oligoclonal banding and demyelinating disease. Neurology. 1994 Sep;44(9):1644–1648. doi: 10.1212/wnl.44.9.1644. [DOI] [PubMed] [Google Scholar]
- Quayle A. J., Wilson K. B., Li S. G., Kjeldsen-Kragh J., Oftung F., Shinnick T., Sioud M., Førre O., Capra J. D., Natvig J. B. Peptide recognition, T cell receptor usage and HLA restriction elements of human heat-shock protein (hsp) 60 and mycobacterial 65-kDa hsp-reactive T cell clones from rheumatoid synovial fluid. Eur J Immunol. 1992 May;22(5):1315–1322. doi: 10.1002/eji.1830220529. [DOI] [PubMed] [Google Scholar]
- Res P. C., Telgt D., van Laar J. M., Pool M. O., Breedveld F. C., de Vries R. R. High antigen reactivity in mononuclear cells from sites of chronic inflammation. Lancet. 1990 Dec 8;336(8728):1406–1408. doi: 10.1016/0140-6736(90)93104-w. [DOI] [PubMed] [Google Scholar]
- Salvetti M., Buttinelli C., Ristori G., Carbonari M., Cherchi M., Fiorelli M., Grasso M. G., Toma L., Pozzilli C. T-lymphocyte reactivity to the recombinant mycobacterial 65- and 70-kDa heat shock proteins in multiple sclerosis. J Autoimmun. 1992 Dec;5(6):691–702. doi: 10.1016/0896-8411(92)90186-t. [DOI] [PubMed] [Google Scholar]
- Satoh J., Nomaguchi H., Tabira T. Constitutive expression of 65-kDa heat shock protein (HSP65)-like immunoreactivity in cultured mouse oligodendrocytes. Brain Res. 1992 Nov 13;595(2):281–290. doi: 10.1016/0006-8993(92)91061-i. [DOI] [PubMed] [Google Scholar]
- Selmaj K., Brosnan C. F., Raine C. S. Colocalization of lymphocytes bearing gamma delta T-cell receptor and heat shock protein hsp65+ oligodendrocytes in multiple sclerosis. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6452–6456. doi: 10.1073/pnas.88.15.6452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Selmaj K., Brosnan C. F., Raine C. S. Expression of heat shock protein-65 by oligodendrocytes in vivo and in vitro: implications for multiple sclerosis. Neurology. 1992 Apr;42(4):795–800. doi: 10.1212/wnl.42.4.795. [DOI] [PubMed] [Google Scholar]
- Selmaj K., Raine C. S., Cannella B., Brosnan C. F. Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest. 1991 Mar;87(3):949–954. doi: 10.1172/JCI115102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimonkevitz R., Colburn C., Burnham J. A., Murray R. S., Kotzin B. L. Clonal expansions of activated gamma/delta T cells in recent-onset multiple sclerosis. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):923–927. doi: 10.1073/pnas.90.3.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sibley W. A., Bamford C. R., Clark K. Clinical viral infections and multiple sclerosis. Lancet. 1985 Jun 8;1(8441):1313–1315. doi: 10.1016/S0140-6736(85)92801-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinhoff U., Schoel B., Kaufmann S. H. Lysis of interferon-gamma activated Schwann cell by cross-reactive CD8+ alpha/beta T cells with specificity for the mycobacterial 65 kd heat shock protein. Int Immunol. 1990;2(3):279–284. doi: 10.1093/intimm/2.3.279. [DOI] [PubMed] [Google Scholar]
- Stevens D. B., Gould K. E., Swanborg R. H. Transforming growth factor-beta 1 inhibits tumor necrosis factor-alpha/lymphotoxin production and adoptive transfer of disease by effector cells of autoimmune encephalomyelitis. J Neuroimmunol. 1994 Apr;51(1):77–83. doi: 10.1016/0165-5728(94)90131-7. [DOI] [PubMed] [Google Scholar]
- Tuohy V. K., Sobel R. A., Lees M. B. Myelin proteolipid protein-induced experimental allergic encephalomyelitis. Variations of disease expression in different strains of mice. J Immunol. 1988 Mar 15;140(6):1868–1873. [PubMed] [Google Scholar]
- Warren K. G., Catz I., Steinman L. Fine specificity of the antibody response to myelin basic protein in the central nervous system in multiple sclerosis: the minimal B-cell epitope and a model of its features. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11061–11065. doi: 10.1073/pnas.92.24.11061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wucherpfennig K. W., Newcombe J., Li H., Keddy C., Cuzner M. L., Hafler D. A. Gamma delta T-cell receptor repertoire in acute multiple sclerosis lesions. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4588–4592. doi: 10.1073/pnas.89.10.4588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang J., Markovic-Plese S., Lacet B., Raus J., Weiner H. L., Hafler D. A. Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med. 1994 Mar 1;179(3):973–984. doi: 10.1084/jem.179.3.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Noort J. M., van Sechel A. C., Bajramovic J. J., el Ouagmiri M., Polman C. H., Lassmann H., Ravid R. The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. Nature. 1995 Jun 29;375(6534):798–801. doi: 10.1038/375798a0. [DOI] [PubMed] [Google Scholar]
- van der Veen R. C., Kapp J. A., Trotter J. L. Fine-specificity differences in the recognition of an encephalitogenic peptide by T helper 1 and 2 cells. J Neuroimmunol. 1993 Nov-Dec;48(2):221–226. doi: 10.1016/0165-5728(93)90195-5. [DOI] [PubMed] [Google Scholar]
- van der Veen R. C., Stohlman S. A. Encephalitogenic Th1 cells are inhibited by Th2 cells with related peptide specificity: relative roles of interleukin (IL)-4 and IL-10. J Neuroimmunol. 1993 Nov-Dec;48(2):213–220. doi: 10.1016/0165-5728(93)90194-4. [DOI] [PubMed] [Google Scholar]
