Abstract
When cells are subjected to various stress factors, they increase the production of a group of proteins called heat shock proteins (hsp). Heat shock proteins are highly conserved proteins present in organisms ranging from bacteria to man. Heat shock proteins enable cells to survive adverse environmental conditions by preventing protein denaturation. Thus the physiological and pathological potential of hsps is enormous and has been studied widely over the past two decades. The presence or absence of hsps influences almost every aspect of reproduction. They are among the first proteins produced during mammalian embryo development. In this report, the production of hsps in gametogenesis and early embryo development is described. It has been suggested that prolonged and asymptomatic infections trigger immunity to microbial hsp epitopes that are also expressed in man. This may be relevant for human reproduction, since many couples with fertility problems have had a previous genital tract infection. Antibodies to bacterial and human hsps are present at high titers in sera of many patients undergoing in vitro fertilization. In a mouse embryo culture model, these antibodies impaired the mouse embryo development at unique developmental stages. The gross morphology of these embryos resembled cells undergoing apoptosis. The TUNEL (terminal deoxynucleotidyl transferase-mediated X-dUTP nick end labeling) staining pattern, which is a common marker of apoptosis, revealed that embryos cultured in the presence of hsp antibodies stained TUNEL-positive more often than unexposed embryos. These data extend preexisting findings showing the detrimental effect of immune sensitization to hsps on embryo development.
Full Text
The Full Text of this article is available as a PDF (657.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. L., O'Brien D. A., Eddy E. M. A novel hsp70-like protein (P70) is present in mouse spermatogenic cells. Mol Cell Biol. 1988 Feb;8(2):828–832. doi: 10.1128/mcb.8.2.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allen R. L., O'Brien D. A., Jones C. C., Rockett D. L., Eddy E. M. Expression of heat shock proteins by isolated mouse spermatogenic cells. Mol Cell Biol. 1988 Aug;8(8):3260–3266. doi: 10.1128/mcb.8.8.3260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ambrosio L., Schedl P. Gene expression during Drosophila melanogaster oogenesis: analysis by in situ hybridization to tissue sections. Dev Biol. 1984 Sep;105(1):80–92. doi: 10.1016/0012-1606(84)90263-x. [DOI] [PubMed] [Google Scholar]
- Barnes F. L., Robl J. M., First N. L. Nuclear transplantation in mouse embryos: assessment of nuclear function. Biol Reprod. 1987 Jun;36(5):1267–1274. doi: 10.1095/biolreprod36.5.1267. [DOI] [PubMed] [Google Scholar]
- Baumgartner A. P., Chrisman C. L. Ovum morphology after hyperthermic stress during meiotic maturation and ovulation in the mouse. J Reprod Fertil. 1981 Jan;61(1):91–96. doi: 10.1530/jrf.0.0610091. [DOI] [PubMed] [Google Scholar]
- Bensaude O., Babinet C., Morange M., Jacob F. Heat shock proteins, first major products of zygotic gene activity in mouse embryo. Nature. 1983 Sep 22;305(5932):331–333. doi: 10.1038/305331a0. [DOI] [PubMed] [Google Scholar]
- Bíró K., Jednákovits A., Kukorelli T., Hegedüs E., Korányi L. Bimoclomol (BRLP-42) ameliorates peripheral neuropathy in streptozotocin-induced diabetic rats. Brain Res Bull. 1997;44(3):259–263. doi: 10.1016/s0361-9230(97)00118-4. [DOI] [PubMed] [Google Scholar]
- Christians E., Campion E., Thompson E. M., Renard J. P. Expression of the HSP 70.1 gene, a landmark of early zygotic activity in the mouse embryo, is restricted to the first burst of transcription. Development. 1995 Jan;121(1):113–122. doi: 10.1242/dev.121.1.113. [DOI] [PubMed] [Google Scholar]
- Curci A., Bevilacqua A., Fiorenza M. T., Mangia F. Developmental regulation of heat-shock response in mouse oogenesis: identification of differentially responsive oocyte classes during Graafian follicle development. Dev Biol. 1991 Apr;144(2):362–368. doi: 10.1016/0012-1606(91)90428-6. [DOI] [PubMed] [Google Scholar]
- Curci A., Bevilacqua A., Mangia F. Lack of heat-shock response in preovulatory mouse oocytes. Dev Biol. 1987 Sep;123(1):154–160. doi: 10.1016/0012-1606(87)90437-4. [DOI] [PubMed] [Google Scholar]
- Dix D. J., Allen J. W., Collins B. W., Mori C., Nakamura N., Poorman-Allen P., Goulding E. H., Eddy E. M. Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3264–3268. doi: 10.1073/pnas.93.8.3264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dix D. J. Hsp70 expression and function during gametogenesis. Cell Stress Chaperones. 1997 Jun;2(2):73–77. doi: 10.1379/1466-1268(1997)002<0073:heafdg>2.3.co;2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erenus M., Zouves C., Rajamahendran P., Leung S., Fluker M., Gomel V. The effect of embryo quality on subsequent pregnancy rates after in vitro fertilization. Fertil Steril. 1991 Oct;56(4):707–710. doi: 10.1016/s0015-0282(16)54603-2. [DOI] [PubMed] [Google Scholar]
- Espey L. L. Current status of the hypothesis that mammalian ovulation is comparable to an inflammatory reaction. Biol Reprod. 1994 Feb;50(2):233–238. doi: 10.1095/biolreprod50.2.233. [DOI] [PubMed] [Google Scholar]
- Hatayama T., Takigawa T., Takeuchi S., Shiota K. Characteristic expression of high molecular mass heat shock protein HSP105 during mouse embryo development. Cell Struct Funct. 1997 Oct;22(5):517–525. doi: 10.1247/csf.22.517. [DOI] [PubMed] [Google Scholar]
- Heikkila J. J., Browder L. W., Gedamu L., Nickells R. W., Schultz G. A. Heat-shock gene expression in animal embryonic systems. Can J Genet Cytol. 1986 Dec;28(6):1093–1105. doi: 10.1139/g86-153. [DOI] [PubMed] [Google Scholar]
- Heikkila J. J., Kloc M., Bury J., Schultz G. A., Browder L. W. Acquisition of the heat-shock response and thermotolerance during early development of Xenopus laevis. Dev Biol. 1985 Feb;107(2):483–489. doi: 10.1016/0012-1606(85)90329-x. [DOI] [PubMed] [Google Scholar]
- Heikkila J. J., Ohan N., Tam Y., Ali A. Heat shock protein gene expression during Xenopus development. Cell Mol Life Sci. 1997 Jan;53(1):114–121. doi: 10.1007/PL00000573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howlett S. K., Barton S. C., Surani M. A. Nuclear cytoplasmic interactions following nuclear transplantation in mouse embryos. Development. 1987 Dec;101(4):915–923. doi: 10.1242/dev.101.4.915. [DOI] [PubMed] [Google Scholar]
- Jurisicova A., Varmuza S., Casper R. F. Programmed cell death and human embryo fragmentation. Mol Hum Reprod. 1996 Feb;2(2):93–98. doi: 10.1093/molehr/2.2.93. [DOI] [PubMed] [Google Scholar]
- Kaufmann S. H. Heat shock proteins and the immune response. Immunol Today. 1990 Apr;11(4):129–136. doi: 10.1016/0167-5699(90)90050-j. [DOI] [PubMed] [Google Scholar]
- Lee S. J. Expression of HSP86 in male germ cells. Mol Cell Biol. 1990 Jun;10(6):3239–3242. doi: 10.1128/mcb.10.6.3239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lenz R. W., Ball G. D., Leibfried M. L., Ax R. L., First N. L. In vitro maturation and fertilization of bovine oocytes are temperature-dependent processes. Biol Reprod. 1983 Aug;29(1):173–179. doi: 10.1095/biolreprod29.1.173. [DOI] [PubMed] [Google Scholar]
- Lindquist S. The heat-shock response. Annu Rev Biochem. 1986;55:1151–1191. doi: 10.1146/annurev.bi.55.070186.005443. [DOI] [PubMed] [Google Scholar]
- Mailhos C., Howard M. K., Latchman D. S. Heat shock protects neuronal cells from programmed cell death by apoptosis. Neuroscience. 1993 Aug;55(3):621–627. doi: 10.1016/0306-4522(93)90428-i. [DOI] [PubMed] [Google Scholar]
- Morange M., Diu A., Bensaude O., Babinet C. Altered expression of heat shock proteins in embryonal carcinoma and mouse early embryonic cells. Mol Cell Biol. 1984 Apr;4(4):730–735. doi: 10.1128/mcb.4.4.730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mori C., Nakamura N., Dix D. J., Fujioka M., Nakagawa S., Shiota K., Eddy E. M. Morphological analysis of germ cell apoptosis during postnatal testis development in normal and Hsp 70-2 knockout mice. Dev Dyn. 1997 Jan;208(1):125–136. doi: 10.1002/(SICI)1097-0177(199701)208:1<125::AID-AJA12>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
- Neuer A., Mele C., Liu H. C., Rosenwaks Z., Witkin S. S. Monoclonal antibodies to mammalian heat shock proteins impair mouse embryo development in vitro. Hum Reprod. 1998 Apr;13(4):987–990. doi: 10.1093/humrep/13.4.987. [DOI] [PubMed] [Google Scholar]
- Spandorfer S. D., Neuer A., LaVerda D., Byrne G., Liu H. C., Rosenwaks Z., Witkin S. S. Previously undetected Chlamydia trachomatis infection, immunity to heat shock proteins and tubal occlusion in women undergoing in-vitro fertilization. Hum Reprod. 1999 Jan;14(1):60–64. doi: 10.1093/humrep/14.1.60. [DOI] [PubMed] [Google Scholar]
- Tissières A., Mitchell H. K., Tracy U. M. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol. 1974 Apr 15;84(3):389–398. doi: 10.1016/0022-2836(74)90447-1. [DOI] [PubMed] [Google Scholar]
- Vígh L., Literáti P. N., Horváth I., Török Z., Balogh G., Glatz A., Kovács E., Boros I., Ferdinándy P., Farkas B. Bimoclomol: a nontoxic, hydroxylamine derivative with stress protein-inducing activity and cytoprotective effects. Nat Med. 1997 Oct;3(10):1150–1154. doi: 10.1038/nm1097-1150. [DOI] [PubMed] [Google Scholar]
- Welch W. J. Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev. 1992 Oct;72(4):1063–1081. doi: 10.1152/physrev.1992.72.4.1063. [DOI] [PubMed] [Google Scholar]
- Werner A., Meinhardt A., Seitz J., Bergmann M. Distribution of heat-shock protein 60 immunoreactivity in testes of infertile men. Cell Tissue Res. 1997 Jun;288(3):539–544. doi: 10.1007/s004410050839. [DOI] [PubMed] [Google Scholar]
- Westwood J. T., Clos J., Wu C. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature. 1991 Oct 31;353(6347):822–827. doi: 10.1038/353822a0. [DOI] [PubMed] [Google Scholar]
- Witkin S. S., Sultan K. M., Neal G. S., Jeremias J., Grifo J. A., Rosenwaks Z. Unsuspected Chlamydia trachomatis infection and in vitro fertilization outcome. Am J Obstet Gynecol. 1994 Nov;171(5):1208–1214. doi: 10.1016/0002-9378(94)90134-1. [DOI] [PubMed] [Google Scholar]
- Wittig S., Hensse S., Keitel C., Elsner C., Wittig B. Heat shock gene expression is regulated during teratocarcinoma cell differentiation and early embryonic development. Dev Biol. 1983 Apr;96(2):507–514. doi: 10.1016/0012-1606(83)90187-2. [DOI] [PubMed] [Google Scholar]
- Zimmerman J. L., Petri W., Meselson M. Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock. Cell. 1983 Apr;32(4):1161–1170. doi: 10.1016/0092-8674(83)90299-4. [DOI] [PubMed] [Google Scholar]