Skip to main content
Infectious Diseases in Obstetrics and Gynecology logoLink to Infectious Diseases in Obstetrics and Gynecology
. 1999;7(1-2):64–71. doi: 10.1155/S1064744999000137

Chlamydial heat shock proteins and disease pathology: new paradigms for old problems?

D LaVerda 1, M V Kalayoglu 1, G I Byrne 1
PMCID: PMC1784717  PMID: 10231012

Abstract

The mucosal pathogen Chlamydia trachomatis affects hundreds of millions of people worldwide and is a significant cause of sexually transmitted disease. Although most acute infections can be easily managed, complications often occur that can be especially severe in women. It has been proposed that increased exposure to conserved chlamydial antigens, such as through reinfection or persistent infection, results in chronic inflammation and tissue scarring and contributes to the pathogenesis of endometrial and fallopian tube damage. This immunopathologic damage is believed to be a principal cause of ectopic pregnancy and tubal factor infertility. The chlamydial heat shock protein Hsp60, a homolog of Escherichia coli GroEL, has been identified as one protein capable of eliciting intense mononuclear inflammation. Furthermore, several studies have revealed a correlation between Hsp60 responses and the immunopathologic manifestations of human chlamydial disease. The role of additional antigens in the immunopathologic response to chlamydiae is currently undefined. A prime candidate, however, is the chlamydial GroES homolog Hsp10, which is genetically and physiologically linked to Hsp60. Recent studies provide data to suggest that immune reactivity to Hsp10 is significantly associated with tubal infertility in a chlamydiae-exposed population. Chlamydia pneumoniae is a more recently defined chlamydial species that has been implicated in a variety of ways with chronic disease processes, such as adult onset asthma and atherosclerosis. Evidence indicates that Hsp60 is present in human atheroma and may play a role in lesion development by direct activation of macrophages. Hsp60 causes the elaboration of inflammatory cytokines, the induction of metalloproteinase, and the oxidation of low density lipoprotein. Each of these events is directly associated with the progress of atherosclerosis. Thus, chlamydial heat shock proteins may function in at least two ways to promote chronic disease: first by direct antigenic stimulation and second as signal transducers that result in macrophage activation. These concepts in disease pathology are discussed in the context of chlamydial infections.

Full Text

The Full Text of this article is available as a PDF (690.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balin B. J., Gérard H. C., Arking E. J., Appelt D. M., Branigan P. J., Abrams J. T., Whittum-Hudson J. A., Hudson A. P. Identification and localization of Chlamydia pneumoniae in the Alzheimer's brain. Med Microbiol Immunol. 1998 Jun;187(1):23–42. doi: 10.1007/s004300050071. [DOI] [PubMed] [Google Scholar]
  2. Barnes P. F., Mehra V., Rivoire B., Fong S. J., Brennan P. J., Voegtline M. S., Minden P., Houghten R. A., Bloom B. R., Modlin R. L. Immunoreactivity of a 10-kDa antigen of Mycobacterium tuberculosis. J Immunol. 1992 Mar 15;148(6):1835–1840. [PubMed] [Google Scholar]
  3. Beatty W. L., Byrne G. I., Morrison R. P. Repeated and persistent infection with Chlamydia and the development of chronic inflammation and disease. Trends Microbiol. 1994 Mar;2(3):94–98. doi: 10.1016/0966-842x(94)90542-8. [DOI] [PubMed] [Google Scholar]
  4. Beatty W. L., Morrison R. P., Byrne G. I. Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol Rev. 1994 Dec;58(4):686–699. doi: 10.1128/mr.58.4.686-699.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berliner J. A., Heinecke J. W. The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med. 1996;20(5):707–727. doi: 10.1016/0891-5849(95)02173-6. [DOI] [PubMed] [Google Scholar]
  6. Beutler A. M., Whittum-Hudson J. A., Nanagara R., Schumacher H. R., Hudson A. P. Intracellular location of inapparently infecting Chlamydia in synovial tissue from patients with Reiter's syndrome. Immunol Res. 1994;13(2-3):163–171. doi: 10.1007/BF02918277. [DOI] [PubMed] [Google Scholar]
  7. Bobo L., Novak N., Mkocha H., Vitale S., West S., Quinn T. C. Evidence for a predominant proinflammatory conjunctival cytokine response in individuals with trachoma. Infect Immun. 1996 Aug;64(8):3273–3279. doi: 10.1128/iai.64.8.3273-3279.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown M. S., Goldstein J. L. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem. 1983;52:223–261. doi: 10.1146/annurev.bi.52.070183.001255. [DOI] [PubMed] [Google Scholar]
  9. Brunham R. C., Peeling R. W. Chlamydia trachomatis antigens: role in immunity and pathogenesis. Infect Agents Dis. 1994 Oct;3(5):218–233. [PubMed] [Google Scholar]
  10. Campbell L. A., Patton D. L., Moore D. E., Cappuccio A. L., Mueller B. A., Wang S. P. Detection of Chlamydia trachomatis deoxyribonucleic acid in women with tubal infertility. Fertil Steril. 1993 Jan;59(1):45–50. [PubMed] [Google Scholar]
  11. Coles A. M., Reynolds D. J., Harper A., Devitt A., Pearce J. H. Low-nutrient induction of abnormal chlamydial development: a novel component of chlamydial pathogenesis? FEMS Microbiol Lett. 1993 Jan 15;106(2):193–200. doi: 10.1111/j.1574-6968.1993.tb05958.x. [DOI] [PubMed] [Google Scholar]
  12. Deshpande R. G., Khan M. B., Navalkar R. G. Immunological evaluation of a 12-kilodalton protein of Mycobacterium tuberculosis by enzyme-linked immunosorbent assay. Tuber Lung Dis. 1993 Dec;74(6):382–387. doi: 10.1016/0962-8479(93)90081-8. [DOI] [PubMed] [Google Scholar]
  13. Dickson R., Larsen B., Viitanen P. V., Tormey M. B., Geske J., Strange R., Bemis L. T. Cloning, expression, and purification of a functional nonacetylated mammalian mitochondrial chaperonin 10. J Biol Chem. 1994 Oct 28;269(43):26858–26864. [PubMed] [Google Scholar]
  14. Domeika M., Domeika K., Paavonen J., Mårdh P. A., Witkin S. S. Humoral immune response to conserved epitopes of Chlamydia trachomatis and human 60-kDa heat-shock protein in women with pelvic inflammatory disease. J Infect Dis. 1998 Mar;177(3):714–719. doi: 10.1086/514218. [DOI] [PubMed] [Google Scholar]
  15. Eckert L. O., Hawes S. E., Wölner-Hanssen P., Money D. M., Peeling R. W., Brunham R. C., Stevens C. E., Eschenbach D. A., Stamm W. E. Prevalence and correlates of antibody to chlamydial heat shock protein in women attending sexually transmitted disease clinics and women with confirmed pelvic inflammatory disease. J Infect Dis. 1997 Jun;175(6):1453–1458. doi: 10.1086/516479. [DOI] [PubMed] [Google Scholar]
  16. Garduño R. A., Garduño E., Hoffman P. S. Surface-associated hsp60 chaperonin of Legionella pneumophila mediates invasion in a HeLa cell model. Infect Immun. 1998 Oct;66(10):4602–4610. doi: 10.1128/iai.66.10.4602-4610.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hatch T. P. Competition between Chlamydia psittaci and L cells for host isoleucine pools: a limiting factor in chlamydial multiplication. Infect Immun. 1975 Jul;12(1):211–220. doi: 10.1128/iai.12.1.211-220.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Holland M. J., Bailey R. L., Hayes L. J., Whittle H. C., Mabey D. C. Conjunctival scarring in trachoma is associated with depressed cell-mediated immune responses to chlamydial antigens. J Infect Dis. 1993 Dec;168(6):1528–1531. doi: 10.1093/infdis/168.6.1528. [DOI] [PubMed] [Google Scholar]
  19. Ilangumaran S., Ramanathan S., Shankernarayan N., Ramu G., Muthukkarauppan V. Immunological profiles of leprosy patients and healthy family contacts toward M. leprae antigens. Int J Lepr Other Mycobact Dis. 1996 Mar;64(1):6–14. [PubMed] [Google Scholar]
  20. Johnson F. W., Hobson D. The effect of penicillin on genital strains of Chlamydia trachomatis in tissue culture. J Antimicrob Chemother. 1977 Jan;3(1):49–56. doi: 10.1093/jac/3.1.49. [DOI] [PubMed] [Google Scholar]
  21. Jyväsjärvi E., Kniffki K. D. Afferent C fibre innervation of cat tooth pulp: confirmation by electrophysiological methods. J Physiol. 1989 Apr;411:663–675. doi: 10.1113/jphysiol.1989.sp017597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kalayoglu M. V., Byrne G. I. A Chlamydia pneumoniae component that induces macrophage foam cell formation is chlamydial lipopolysaccharide. Infect Immun. 1998 Nov;66(11):5067–5072. doi: 10.1128/iai.66.11.5067-5072.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kalayoglu M. V., Byrne G. I. Induction of macrophage foam cell formation by Chlamydia pneumoniae. J Infect Dis. 1998 Mar;177(3):725–729. doi: 10.1086/514241. [DOI] [PubMed] [Google Scholar]
  24. Kim J., Sette A., Rodda S., Southwood S., Sieling P. A., Mehra V., Ohmen J. D., Oliveros J., Appella E., Higashimoto Y. Determinants of T cell reactivity to the Mycobacterium leprae GroES homologue. J Immunol. 1997 Jul 1;159(1):335–343. [PubMed] [Google Scholar]
  25. Kol A., Sukhova G. K., Lichtman A. H., Libby P. Chlamydial heat shock protein 60 localizes in human atheroma and regulates macrophage tumor necrosis factor-alpha and matrix metalloproteinase expression. Circulation. 1998 Jul 28;98(4):300–307. doi: 10.1161/01.cir.98.4.300. [DOI] [PubMed] [Google Scholar]
  26. LaVerda D., Byrne G. I. Use of monoclonal antibodies to facilitate identification, cloning, and purification of Chlamydia trachomatis hsp10. J Clin Microbiol. 1997 May;35(5):1209–1215. doi: 10.1128/jcm.35.5.1209-1215.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Launois P., N'Diaye M. N., Cartel J. L., Mane I., Drowart A., Van Vooren J. P., Sarthou J. L., Huygen K. Fibronectin-binding antigen 85 and the 10-kilodalton GroES-related heat shock protein are the predominant TH-1 response inducers in leprosy contacts. Infect Immun. 1995 Jan;63(1):88–93. doi: 10.1128/iai.63.1.88-93.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mehra V., Bloom B. R., Bajardi A. C., Grisso C. L., Sieling P. A., Alland D., Convit J., Fan X. D., Hunter S. W., Brennan P. J. A major T cell antigen of Mycobacterium leprae is a 10-kD heat-shock cognate protein. J Exp Med. 1992 Jan 1;175(1):275–284. doi: 10.1084/jem.175.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Minden P., Houghten R. A., Spear J. R., Shinnick T. M. A chemically synthesized peptide which elicits humoral and cellular immune responses to mycobacterial antigens. Infect Immun. 1986 Sep;53(3):560–564. doi: 10.1128/iai.53.3.560-564.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Money D. M., Hawes S. E., Eschenbach D. A., Peeling R. W., Brunham R., Wölner-Hanssen P., Stamm W. E. Antibodies to the chlamydial 60 kd heat-shock protein are associated with laparoscopically confirmed perihepatitis. Am J Obstet Gynecol. 1997 Apr;176(4):870–877. doi: 10.1016/s0002-9378(97)70613-6. [DOI] [PubMed] [Google Scholar]
  31. Morrison R. P., Lyng K., Caldwell H. D. Chlamydial disease pathogenesis. Ocular hypersensitivity elicited by a genus-specific 57-kD protein. J Exp Med. 1989 Mar 1;169(3):663–675. doi: 10.1084/jem.169.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Moulder J. W., Levy N. J., Schulman L. P. Persistent infection of mouse fibroblasts (L cells) with Chlamydia psittaci: evidence for a cryptic chlamydial form. Infect Immun. 1980 Dec;30(3):874–883. doi: 10.1128/iai.30.3.874-883.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Paavonen J., Lehtinen M. Chlamydial pelvic inflammatory disease. Hum Reprod Update. 1996 Nov-Dec;2(6):519–529. doi: 10.1093/humupd/2.6.519. [DOI] [PubMed] [Google Scholar]
  34. Patton D. L., Sweeney Y. T., Kuo C. C. Demonstration of delayed hypersensitivity in Chlamydia trachomatis salpingitis in monkeys: a pathogenic mechanism of tubal damage. J Infect Dis. 1994 Mar;169(3):680–683. doi: 10.1093/infdis/169.3.680. [DOI] [PubMed] [Google Scholar]
  35. Quinn T. C. Does Chlamydia pneumoniae cause coronary heart disease? Curr Opin Infect Dis. 1998 Jun;11(3):301–307. doi: 10.1097/00001432-199806000-00006. [DOI] [PubMed] [Google Scholar]
  36. Rasmussen S. J., Eckmann L., Quayle A. J., Shen L., Zhang Y. X., Anderson D. J., Fierer J., Stephens R. S., Kagnoff M. F. Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. J Clin Invest. 1997 Jan 1;99(1):77–87. doi: 10.1172/JCI119136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  38. Sziller I., Witkin S. S., Ziegert M., Csapó Z., Ujházy A., Papp Z. Serological responses of patients with ectopic pregnancy to epitopes of the Chlamydia trachomatis 60 kDa heat shock protein. Hum Reprod. 1998 Apr;13(4):1088–1093. doi: 10.1093/humrep/13.4.1088. [DOI] [PubMed] [Google Scholar]
  39. Taylor H. R., Johnson S. L., Schachter J., Caldwell H. D., Prendergast R. A. Pathogenesis of trachoma: the stimulus for inflammation. J Immunol. 1987 May 1;138(9):3023–3027. [PubMed] [Google Scholar]
  40. Toye B., Laferrière C., Claman P., Jessamine P., Peeling R. Association between antibody to the chlamydial heat-shock protein and tubal infertility. J Infect Dis. 1993 Nov;168(5):1236–1240. doi: 10.1093/infdis/168.5.1236. [DOI] [PubMed] [Google Scholar]
  41. Ward M., Bailey R., Lesley A., Kajbaf M., Robertson J., Mabey D. Persisting inapparent chlamydial infection in a trachoma endemic community in The Gambia. Scand J Infect Dis Suppl. 1990;69:137–148. [PubMed] [Google Scholar]
  42. Watkins N. G., Hadlow W. J., Moos A. B., Caldwell H. D. Ocular delayed hypersensitivity: a pathogenetic mechanism of chlamydial-conjunctivitis in guinea pigs. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7480–7484. doi: 10.1073/pnas.83.19.7480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Witkin S. S., Jeremias J., Toth M., Ledger W. J. Cell-mediated immune response to the recombinant 57-kDa heat-shock protein of Chlamydia trachomatis in women with salpingitis. J Infect Dis. 1993 Jun;167(6):1379–1383. doi: 10.1093/infdis/167.6.1379. [DOI] [PubMed] [Google Scholar]
  44. Witkin S. S., Jeremias J., Toth M., Ledger W. J. Proliferative response to conserved epitopes of the Chlamydia trachomatis and human 60-kilodalton heat-shock proteins by lymphocytes from women with salpingitis. Am J Obstet Gynecol. 1994 Aug;171(2):455–460. doi: 10.1016/0002-9378(94)90282-8. [DOI] [PubMed] [Google Scholar]
  45. Yi Y., Yang X., Brunham R. C. Autoimmunity to heat shock protein 60 and antigen-specific production of interleukin-10. Infect Immun. 1997 May;65(5):1669–1674. doi: 10.1128/iai.65.5.1669-1674.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Young R. A., Elliott T. J. Stress proteins, infection, and immune surveillance. Cell. 1989 Oct 6;59(1):5–8. doi: 10.1016/0092-8674(89)90861-1. [DOI] [PubMed] [Google Scholar]

Articles from Infectious Diseases in Obstetrics and Gynecology are provided here courtesy of Wiley

RESOURCES