Skip to main content
Infectious Diseases in Obstetrics and Gynecology logoLink to Infectious Diseases in Obstetrics and Gynecology
. 1999;7(1-2):80–90. doi: 10.1155/S1064744999000150

Heat shock protein-based therapeutic strategies against human immunodeficiency virus type 1 infection.

B G Brenner 1, M A Wainberg 1
PMCID: PMC1784721  PMID: 10231014

Abstract

Heat shock proteins (hsps) and cyclophilins (CypA) are intracellular chaperone molecules that facilitate protein folding and assembly. These proteins are selectively expressed in cells following exposure to a range of stress stimuli, including viral infection. Hsp species are highly immunogenic, eliciting humoral, cytotoxic T lymphocyte (CTL), and natural killer (NK) cell responses against viruses, tumours, and infectious diseases. This review discusses the roles of stress proteins in immunity and viral life cycles, vis-à-vis the development of Hsp-based therapeutic strategies against human immunodeficiency virus type-1 (HIV-1) infection. Cumulative findings are cited implicating the requirement of CypA in HIV-1 replication and formation of infectious virions. Studies by our group show the upregulated expression of hsp27 and hsp70 during single-cycle HIV infections. These species redistribute to the cell surface following HIV-infection and heat stress, serving as targets for NK and antibody-dependent cellular cytotoxicity. Co-immunoprecipitation and Western blot studies show that hsp27, hsp70, and hsp78 complex with HIV-1 viral proteins intracellularly. Hsp70, hsp56, and CypA are assembled into HIV-1 virions. The ability of hsps to interact with HIV-1 viral proteins, combined with their inherent adjuvant and immunogenic properties, indicates that hsps may serve as vehicles for antigen delivery and the design of vaccines against acquired immunodeficiency syndrome.

Full Text

The Full Text of this article is available as a PDF (934.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiken C. Mechanistic independence of Nef and cyclophilin A enhancement of human immunodeficiency virus type 1 infectivity. Virology. 1998 Aug 15;248(1):139–147. doi: 10.1006/viro.1998.9254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aldovini A., Young R. A. Humoral and cell-mediated immune responses to live recombinant BCG-HIV vaccines. Nature. 1991 Jun 6;351(6326):479–482. doi: 10.1038/351479a0. [DOI] [PubMed] [Google Scholar]
  3. Ankel H., Turriziani O., Antonelli G. Prostaglandin A inhibits replication of human immunodeficiency virus during acute infection. J Gen Virol. 1991 Nov;72(Pt 11):2797–2800. doi: 10.1099/0022-1317-72-11-2797. [DOI] [PubMed] [Google Scholar]
  4. Bartz S. R., Pauza C. D., Ivanyi J., Jindal S., Welch W. J., Malkovsky M. An Hsp60 related protein is associated with purified HIV and SIV. J Med Primatol. 1994 Feb-May;23(2-3):151–154. doi: 10.1111/j.1600-0684.1994.tb00116.x. [DOI] [PubMed] [Google Scholar]
  5. Billich A., Hammerschmid F., Peichl P., Wenger R., Zenke G., Quesniaux V., Rosenwirth B. Mode of action of SDZ NIM 811, a nonimmunosuppressive cyclosporin A analog with activity against human immunodeficiency virus (HIV) type 1: interference with HIV protein-cyclophilin A interactions. J Virol. 1995 Apr;69(4):2451–2461. doi: 10.1128/jvi.69.4.2451-2461.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blachere N. E., Li Z., Chandawarkar R. Y., Suto R., Jaikaria N. S., Basu S., Udono H., Srivastava P. K. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med. 1997 Oct 20;186(8):1315–1322. doi: 10.1084/jem.186.8.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Born W., Happ M. P., Dallas A., Reardon C., Kubo R., Shinnick T., Brennan P., O'Brien R. Recognition of heat shock proteins and gamma delta cell function. Immunol Today. 1990 Feb;11(2):40–43. doi: 10.1016/0167-5699(90)90015-2. [DOI] [PubMed] [Google Scholar]
  8. Botzler C., Li G., Issels R. D., Multhoff G. Definition of extracellular localized epitopes of Hsp70 involved in an NK immune response. Cell Stress Chaperones. 1998 Mar;3(1):6–11. doi: 10.1379/1466-1268(1998)003<0006:doeleo>2.3.co;2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Braaten D., Franke E. K., Luban J. Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription. J Virol. 1996 Jun;70(6):3551–3560. doi: 10.1128/jvi.70.6.3551-3560.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Braaten D., Franke E. K., Luban J. Cyclophilin A is required for the replication of group M human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus SIV(CPZ)GAB but not group O HIV-1 or other primate immunodeficiency viruses. J Virol. 1996 Jul;70(7):4220–4227. doi: 10.1128/jvi.70.7.4220-4227.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brenner B. G., Dascal A., Margolese R. G., Wainberg M. A. Natural killer cell function in patients with acquired immunodeficiency syndrome and related diseases. J Leukoc Biol. 1989 Jul;46(1):75–83. doi: 10.1002/jlb.46.1.75. [DOI] [PubMed] [Google Scholar]
  12. Brenner B. G., Gornitsky M., Wainberg M. A. Interleukin-2-inducible natural immune (lymphokine-activated killer cell) responses as a functional correlate of progression to AIDS. Clin Diagn Lab Immunol. 1994 Sep;1(5):538–544. doi: 10.1128/cdli.1.5.538-544.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Brenner B. G., Gryllis C., Gornitsky M., Wainberg M. A. Changes in natural immunity during the course of HIV-1 infection. Clin Exp Immunol. 1993 Aug;93(2):142–148. doi: 10.1111/j.1365-2249.1993.tb07956.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Brenner B. G., Gryllis C., Wainberg M. A. Role of antibody-dependent cellular cytotoxicity and lymphokine-activated killer cells in AIDS and related diseases. J Leukoc Biol. 1991 Dec;50(6):628–640. doi: 10.1002/jlb.50.6.628. [DOI] [PubMed] [Google Scholar]
  15. Brenner B. G., Tao Y., Pearson E., Remer I., Wainberg M. A. Altered constitutive and stress-regulated heat shock protein 27 expression in HIV type 1-infected cell lines. AIDS Res Hum Retroviruses. 1995 Jun;11(6):713–717. doi: 10.1089/aid.1995.11.713. [DOI] [PubMed] [Google Scholar]
  16. Ciupitu A. M., Petersson M., O'Donnell C. L., Williams K., Jindal S., Kiessling R., Welsh R. M. Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T lymphocytes. J Exp Med. 1998 Mar 2;187(5):685–691. doi: 10.1084/jem.187.5.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Craig E. A., Gambill B. D., Nelson R. J. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev. 1993 Jun;57(2):402–414. doi: 10.1128/mr.57.2.402-414.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Craig E. A., Weissman J. S., Horwich A. L. Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell. Cell. 1994 Aug 12;78(3):365–372. doi: 10.1016/0092-8674(94)90416-2. [DOI] [PubMed] [Google Scholar]
  19. D'Onofrio C., Alvino E., Garaci E., Bonmassar E., Santoro M. G. Selection of HTLV-I positive clones is prevented by prostaglandin A in infected cord blood cultures. Br J Cancer. 1990 Feb;61(2):207–214. doi: 10.1038/bjc.1990.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. DeNagel D. C., Pierce S. K. Heat shock proteins in immune responses. Crit Rev Immunol. 1993;13(1):71–81. [PubMed] [Google Scholar]
  21. Di Cesare S., Poccia F., Mastino A., Colizzi V. Surface expressed heat-shock proteins by stressed or human immunodeficiency virus (HIV)-infected lymphoid cells represent the target for antibody-dependent cellular cytotoxicity. Immunology. 1992 Jun;76(2):341–343. [PMC free article] [PubMed] [Google Scholar]
  22. Dubois P. Heat shock proteins and immunity. Res Immunol. 1989 Sep;140(7):653–659. doi: 10.1016/0923-2494(89)90019-9. [DOI] [PubMed] [Google Scholar]
  23. Earl P. L., Moss B., Doms R. W. Folding, interaction with GRP78-BiP, assembly, and transport of the human immunodeficiency virus type 1 envelope protein. J Virol. 1991 Apr;65(4):2047–2055. doi: 10.1128/jvi.65.4.2047-2055.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Endrich M. M., Gehring H. The V3 loop of human immunodeficiency virus type-1 envelope protein is a high-affinity ligand for immunophilins present in human blood. Eur J Biochem. 1998 Mar 15;252(3):441–446. doi: 10.1046/j.1432-1327.1998.2520441.x. [DOI] [PubMed] [Google Scholar]
  25. Featherstone C. Chaperoning tumour antigens into the immune system. Lancet. 1996 Nov 23;348(9039):1438–1438. [PubMed] [Google Scholar]
  26. Franke E. K., Yuan H. E., Luban J. Specific incorporation of cyclophilin A into HIV-1 virions. Nature. 1994 Nov 24;372(6504):359–362. doi: 10.1038/372359a0. [DOI] [PubMed] [Google Scholar]
  27. Franke E. K., Yuan H. E., Luban J. Specific incorporation of cyclophilin A into HIV-1 virions. Nature. 1994 Nov 24;372(6504):359–362. doi: 10.1038/372359a0. [DOI] [PubMed] [Google Scholar]
  28. Freshney N. W., Rawlinson L., Guesdon F., Jones E., Cowley S., Hsuan J., Saklatvala J. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell. 1994 Sep 23;78(6):1039–1049. doi: 10.1016/0092-8674(94)90278-x. [DOI] [PubMed] [Google Scholar]
  29. Fujieda S., Noda I., Saito H., Hoshino T., Yagita M. Heat shock enhances the susceptibility of tumor cells to lysis by lymphokine-activated killer cells. Arch Otolaryngol Head Neck Surg. 1995 Sep;121(9):1009–1014. doi: 10.1001/archotol.1995.01890090049010. [DOI] [PubMed] [Google Scholar]
  30. Furlini G., Vignoli M., Re M. C., Gibellini D., Ramazzotti E., Zauli G., La Placa M. Human immunodeficiency virus type 1 interaction with the membrane of CD4+ cells induces the synthesis and nuclear translocation of 70K heat shock protein. J Gen Virol. 1994 Jan;75(Pt 1):193–199. doi: 10.1099/0022-1317-75-1-193. [DOI] [PubMed] [Google Scholar]
  31. Geelen J. L., Minnaar R. P., Boom R., van der Noordaa J., Goudsmit J. Heat-shock induction of the human immunodeficiency virus long terminal repeat. J Gen Virol. 1988 Nov;69(Pt 11):2913–2917. doi: 10.1099/0022-1317-69-11-2913. [DOI] [PubMed] [Google Scholar]
  32. Gething M. J., Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
  33. Gryllis C., Wainberg M. A., Bentwich Z., Gornitsky M., Brenner B. G. Increased LAK activity against HIV-infected cell lines in HIV-1+ individuals. Clin Exp Immunol. 1992 Sep;89(3):356–361. doi: 10.1111/j.1365-2249.1992.tb06962.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Gryllis C., Wainberg M. A., Gornitsky M., Brenner B. Diminution of inducible lymphokine-activated killer cell activity in individuals with AIDS-related disorders. AIDS. 1990 Dec;4(12):1205–1212. doi: 10.1097/00002030-199012000-00004. [DOI] [PubMed] [Google Scholar]
  35. Heikema A., Agsteribbe E., Wilschut J., Huckriede A. Generation of heat shock protein-based vaccines by intracellular loading of gp96 with antigenic peptides. Immunol Lett. 1997 Jun 1;57(1-3):69–74. doi: 10.1016/s0165-2478(97)00048-5. [DOI] [PubMed] [Google Scholar]
  36. Hughes-Fulford M., McGrath M. S., Hanks D., Erickson S., Pulliam L. Effects of dimethyl prostaglandin A1 on herpes simplex virus and human immunodeficiency virus replication. Antimicrob Agents Chemother. 1992 Oct;36(10):2253–2258. doi: 10.1128/aac.36.10.2253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ikonomidis G., Paterson Y., Kos F. J., Portnoy D. A. Delivery of a viral antigen to the class I processing and presentation pathway by Listeria monocytogenes. J Exp Med. 1994 Dec 1;180(6):2209–2218. doi: 10.1084/jem.180.6.2209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. James P., Pfund C., Craig E. A. Functional specificity among Hsp70 molecular chaperones. Science. 1997 Jan 17;275(5298):387–389. doi: 10.1126/science.275.5298.387. [DOI] [PubMed] [Google Scholar]
  39. Kretz-Remy C., Arrigo A. P. The kinetics of HIV-1 long terminal repeat transcriptional activation resemble those of hsp70 promoter in heat-shock treated HeLa cells. FEBS Lett. 1994 Oct 24;353(3):339–344. doi: 10.1016/0014-5793(94)00828-0. [DOI] [PubMed] [Google Scholar]
  40. Letvin N. L. Progress in the development of an HIV-1 vaccine. Science. 1998 Jun 19;280(5371):1875–1880. doi: 10.1126/science.280.5371.1875. [DOI] [PubMed] [Google Scholar]
  41. Li Z. Priming of T cells by heat shock protein-peptide complexes as the basis of tumor vaccines. Semin Immunol. 1997 Oct;9(5):315–322. doi: 10.1006/smim.1997.0087. [DOI] [PubMed] [Google Scholar]
  42. Li Z., Srivastava P. K. A critical contemplation on the role of heat shock proteins in transfer of antigenic peptides during antigen presentation. Behring Inst Mitt. 1994 Jul;(94):37–47. [PubMed] [Google Scholar]
  43. Luban J. Absconding with the chaperone: essential cyclophilin-Gag interaction in HIV-1 virions. Cell. 1996 Dec 27;87(7):1157–1159. doi: 10.1016/s0092-8674(00)81811-5. [DOI] [PubMed] [Google Scholar]
  44. Maxwell-Armstrong C. A., Durrant L. G., Scholefield J. H. Colorectal cancer vaccines. Br J Surg. 1998 Feb;85(2):149–154. doi: 10.1046/j.1365-2168.1998.00704.x. [DOI] [PubMed] [Google Scholar]
  45. Mehlen P., Preville X., Chareyron P., Briolay J., Klemenz R., Arrigo A. P. Constitutive expression of human hsp27, Drosophila hsp27, or human alpha B-crystallin confers resistance to TNF- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. J Immunol. 1995 Jan 1;154(1):363–374. [PubMed] [Google Scholar]
  46. Mizzen L. Immune responses to stress proteins: applications to infectious disease and cancer. Biotherapy. 1998;10(3):173–189. doi: 10.1007/BF02678295. [DOI] [PubMed] [Google Scholar]
  47. Morimoto R. I. Cells in stress: transcriptional activation of heat shock genes. Science. 1993 Mar 5;259(5100):1409–1410. doi: 10.1126/science.8451637. [DOI] [PubMed] [Google Scholar]
  48. Multhoff G., Botzler C., Jennen L., Schmidt J., Ellwart J., Issels R. Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J Immunol. 1997 May 1;158(9):4341–4350. [PubMed] [Google Scholar]
  49. Multhoff G., Botzler C., Wiesnet M., Eissner G., Issels R. CD3- large granular lymphocytes recognize a heat-inducible immunogenic determinant associated with the 72-kD heat shock protein on human sarcoma cells. Blood. 1995 Aug 15;86(4):1374–1382. [PubMed] [Google Scholar]
  50. Multhoff G., Botzler C., Wiesnet M., Müller E., Meier T., Wilmanns W., Issels R. D. A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer. 1995 Apr 10;61(2):272–279. doi: 10.1002/ijc.2910610222. [DOI] [PubMed] [Google Scholar]
  51. Newport G. R. Heat shock proteins as vaccine candidates. Semin Immunol. 1991 Jan;3(1):17–24. [PubMed] [Google Scholar]
  52. Nieland T. J., Tan M. C., Monne-van Muijen M., Koning F., Kruisbeek A. M., van Bleek G. M. Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6135–6139. doi: 10.1073/pnas.93.12.6135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Otteken A., Moss B. Calreticulin interacts with newly synthesized human immunodeficiency virus type 1 envelope glycoprotein, suggesting a chaperone function similar to that of calnexin. J Biol Chem. 1996 Jan 5;271(1):97–103. doi: 10.1074/jbc.271.1.97. [DOI] [PubMed] [Google Scholar]
  54. Pennypacker C., Perelson A. S., Nys N., Nelson G., Sessler D. I. Localized or systemic in vivo heat inactivation of human immunodeficiency virus (HIV): a mathematical analysis. J Acquir Immune Defic Syndr Hum Retrovirol. 1995 Apr 1;8(4):321–329. [PubMed] [Google Scholar]
  55. Phillips B., Abravaya K., Morimoto R. I. Analysis of the specificity and mechanism of transcriptional activation of the human hsp70 gene during infection by DNA viruses. J Virol. 1991 Nov;65(11):5680–5692. doi: 10.1128/jvi.65.11.5680-5692.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Pierce S. K. Molecular chaperones in the processing and presentation of antigen to helper T cells. Experientia. 1994 Nov 30;50(11-12):1026–1030. doi: 10.1007/BF01923457. [DOI] [PubMed] [Google Scholar]
  57. Rossi A., Elia G., Santoro M. G. 2-Cyclopenten-1-one, a new inducer of heat shock protein 70 with antiviral activity. J Biol Chem. 1996 Dec 13;271(50):32192–32196. doi: 10.1074/jbc.271.50.32192. [DOI] [PubMed] [Google Scholar]
  58. Rouse J., Cohen P., Trigon S., Morange M., Alonso-Llamazares A., Zamanillo D., Hunt T., Nebreda A. R. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell. 1994 Sep 23;78(6):1027–1037. doi: 10.1016/0092-8674(94)90277-1. [DOI] [PubMed] [Google Scholar]
  59. Rozera C., Carattoli A., De Marco A., Amici C., Giorgi C., Santoro M. G. Inhibition of HIV-1 replication by cyclopentenone prostaglandins in acutely infected human cells. Evidence for a transcriptional block. J Clin Invest. 1996 Apr 15;97(8):1795–1803. doi: 10.1172/JCI118609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Rutherford S. L., Zuker C. S. Protein folding and the regulation of signaling pathways. Cell. 1994 Dec 30;79(7):1129–1132. doi: 10.1016/0092-8674(94)90003-5. [DOI] [PubMed] [Google Scholar]
  61. Santoro M. G. Heat shock proteins and virus replication: hsp70s as mediators of the antiviral effects of prostaglandins. Experientia. 1994 Nov 30;50(11-12):1039–1047. doi: 10.1007/BF01923459. [DOI] [PubMed] [Google Scholar]
  62. Santoro M. G. Viral infection. EXS. 1996;77:337–357. doi: 10.1007/978-3-0348-9088-5_23. [DOI] [PubMed] [Google Scholar]
  63. Sargent C. A., Dunham I., Trowsdale J., Campbell R. D. Human major histocompatibility complex contains genes for the major heat shock protein HSP70. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1968–1972. doi: 10.1073/pnas.86.6.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Sherry B., Zybarth G., Alfano M., Dubrovsky L., Mitchell R., Rich D., Ulrich P., Bucala R., Cerami A., Bukrinsky M. Role of cyclophilin A in the uptake of HIV-1 by macrophages and T lymphocytes. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1758–1763. doi: 10.1073/pnas.95.4.1758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Srivastava P. K., DeLeo A. B., Old L. J. Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci U S A. 1986 May;83(10):3407–3411. doi: 10.1073/pnas.83.10.3407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Srivastava P. K. Heat shock proteins in immune response to cancer: the Fourth Paradigm. Experientia. 1994 Nov 30;50(11-12):1054–1060. doi: 10.1007/BF01923461. [DOI] [PubMed] [Google Scholar]
  67. Srivastava P. K. Peptide-binding heat shock proteins in the endoplasmic reticulum: role in immune response to cancer and in antigen presentation. Adv Cancer Res. 1993;62:153–177. doi: 10.1016/s0065-230x(08)60318-8. [DOI] [PubMed] [Google Scholar]
  68. Srivastava P. K. Purification of heat shock protein-peptide complexes for use in vaccination against cancers and intracellular pathogens. Methods. 1997 Jun;12(2):165–171. doi: 10.1006/meth.1997.0464. [DOI] [PubMed] [Google Scholar]
  69. Stanley S. K., Bressler P. B., Poli G., Fauci A. S. Heat shock induction of HIV production from chronically infected promonocytic and T cell lines. J Immunol. 1990 Aug 15;145(4):1120–1126. [PubMed] [Google Scholar]
  70. Steinman R. M., Germain R. N. Antigen presentation and related immunological aspects of HIV-1 vaccines. AIDS. 1998;12 (Suppl A):S97–112. [PubMed] [Google Scholar]
  71. Suto R., Srivastava P. K. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science. 1995 Sep 15;269(5230):1585–1588. doi: 10.1126/science.7545313. [DOI] [PubMed] [Google Scholar]
  72. Suzue K., Young R. A. Adjuvant-free hsp70 fusion protein system elicits humoral and cellular immune responses to HIV-1 p24. J Immunol. 1996 Jan 15;156(2):873–879. [PubMed] [Google Scholar]
  73. Suzue K., Young R. A. Heat shock proteins as immunological carriers and vaccines. EXS. 1996;77:451–465. doi: 10.1007/978-3-0348-9088-5_30. [DOI] [PubMed] [Google Scholar]
  74. Suzue K., Zhou X., Eisen H. N., Young R. A. Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13146–13151. doi: 10.1073/pnas.94.24.13146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Tamura Y., Peng P., Liu K., Daou M., Srivastava P. K. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science. 1997 Oct 3;278(5335):117–120. doi: 10.1126/science.278.5335.117. [DOI] [PubMed] [Google Scholar]
  76. Thali M., Bukovsky A., Kondo E., Rosenwirth B., Walsh C. T., Sodroski J., Göttlinger H. G. Functional association of cyclophilin A with HIV-1 virions. Nature. 1994 Nov 24;372(6504):363–365. doi: 10.1038/372363a0. [DOI] [PubMed] [Google Scholar]
  77. Wainberg Z., Oliveira M., Lerner S., Tao Y., Brenner B. G. Modulation of stress protein (hsp27 and hsp70) expression in CD4+ lymphocytic cells following acute infection with human immunodeficiency virus type-1. Virology. 1997 Jul 7;233(2):364–373. doi: 10.1006/viro.1997.8618. [DOI] [PubMed] [Google Scholar]
  78. Yin L., Braaten D., Luban J. Human immunodeficiency virus type 1 replication is modulated by host cyclophilin A expression levels. J Virol. 1998 Aug;72(8):6430–6436. doi: 10.1128/jvi.72.8.6430-6436.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. van Eden W., van der Zee R., Paul A. G., Prakken B. J., Wendling U., Anderton S. M., Wauben M. H. Do heat shock proteins control the balance of T-cell regulation in inflammatory diseases? Immunol Today. 1998 Jul;19(7):303–307. doi: 10.1016/s0167-5699(98)01283-3. [DOI] [PubMed] [Google Scholar]

Articles from Infectious Diseases in Obstetrics and Gynecology are provided here courtesy of Wiley

RESOURCES