Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Nov;178(21):6105–6109. doi: 10.1128/jb.178.21.6105-6109.1996

Sodium-driven, osmotically activated glycine betaine transport in Listeria monocytogenes membrane vesicles.

P N Gerhardt 1, L T Smith 1, G M Smith 1
PMCID: PMC178477  PMID: 8892806

Abstract

Transport of the osmoprotectant and cryoprotectant glycine betaine was investigated in membrane vesicles of Listeria monocytogenes. Uptake-driving transmembrane potentials ranging from 111 to 122 mV within the pH range of 5.5 to 7.5 could be generated by the electron donor system ascorbate-phenazine methosulfate but not by the electron donor system ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine. Transport was dependent on both high concentrations of sodium ion and the presence of a hypertonic solute gradient. Arrhenius-type temperature activation was observed. Lineweaver-Burk plots indicated a Km of 4.4 microM for glycine betaine and a Vmax of 700 pmol/min x mg of protein. The Michaelis constant for NaCl depended on the solute used to maintain a constant hyperosmotic pressure, and the Km values were 200 and 75 mM when KCl and sucrose were employed, respectively. Transport was 65% lower in vesicles derived from cells grown under stress provided by KCI rather than NaCl and approximately 94% lower in vesicles derived from cells that were not grown under osmotic stress. This porter appears to be specific for glycine betaine, since neither proline, carnitine, nor choline inhibited uptake effectively. Kinetic studies using ionophores and artificial gradients indicate that glycine betaine is cotransported with sodium ion.

Full Text

The Full Text of this article is available as a PDF (243.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bae J. H., Anderson S. H., Miller K. J. Identification of a high-affinity glycine betaine transport system in Staphylococcus aureus. Appl Environ Microbiol. 1993 Aug;59(8):2734–2736. doi: 10.1128/aem.59.8.2734-2736.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cole M. B., Jones M. V., Holyoak C. The effect of pH, salt concentration and temperature on the survival and growth of Listeria monocytogenes. J Appl Bacteriol. 1990 Jul;69(1):63–72. doi: 10.1111/j.1365-2672.1990.tb02912.x. [DOI] [PubMed] [Google Scholar]
  3. Csonka L. N., Hanson A. D. Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol. 1991;45:569–606. doi: 10.1146/annurev.mi.45.100191.003033. [DOI] [PubMed] [Google Scholar]
  4. Csonka L. N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev. 1989 Mar;53(1):121–147. doi: 10.1128/mr.53.1.121-147.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Farber J. M., Peterkin P. I. Listeria monocytogenes, a food-borne pathogen. Microbiol Rev. 1991 Sep;55(3):476–511. doi: 10.1128/mr.55.3.476-511.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feresu S. B., Jones D. Taxonomic studies on Brochothrix, Erysipelothrix, Listeria and atypical lactobacilli. J Gen Microbiol. 1988 May;134(5):1165–1183. doi: 10.1099/00221287-134-5-1165. [DOI] [PubMed] [Google Scholar]
  7. Fougère F., Le Rudulier D. Uptake of glycine betaine and its analogues by bacteroids of Rhizobium meliloti. J Gen Microbiol. 1990 Jan;136(1):157–163. doi: 10.1099/00221287-136-1-157. [DOI] [PubMed] [Google Scholar]
  8. Kita K., Kasahara M., Anraku Y. Formation of a membrane potential by reconstructed liposomes made with cytochrome b562-o complex, a terminal oxidase of Escherichia coli K12. J Biol Chem. 1982 Jul 25;257(14):7933–7935. [PubMed] [Google Scholar]
  9. Ko R., Smith L. T., Smith G. M. Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J Bacteriol. 1994 Jan;176(2):426–431. doi: 10.1128/jb.176.2.426-431.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kunin C. M., Rudy J. Effect of NaCl-induced osmotic stress on intracellular concentrations of glycine betaine and potassium in Escherichia coli, Enterococcus faecalis, and staphylococci. J Lab Clin Med. 1991 Sep;118(3):217–224. [PubMed] [Google Scholar]
  11. Landfald B., Strøm A. R. Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J Bacteriol. 1986 Mar;165(3):849–855. doi: 10.1128/jb.165.3.849-855.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Milner J. L., Grothe S., Wood J. M. Proline porter II is activated by a hyperosmotic shift in both whole cells and membrane vesicles of Escherichia coli K12. J Biol Chem. 1988 Oct 15;263(29):14900–14905. [PubMed] [Google Scholar]
  13. Molenaar D., Hagting A., Alkema H., Driessen A. J., Konings W. N. Characteristics and osmoregulatory roles of uptake systems for proline and glycine betaine in Lactococcus lactis. J Bacteriol. 1993 Sep;175(17):5438–5444. doi: 10.1128/jb.175.17.5438-5444.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Otto R., Lageveen R. G., Veldkamp H., Konings W. N. Lactate efflux-induced electrical potential in membrane vesicles of Streptococcus cremoris. J Bacteriol. 1982 Feb;149(2):733–738. doi: 10.1128/jb.149.2.733-738.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Patchett R. A., Kelly A. F., Kroll R. G. Effect of sodium chloride on the intracellular solute pools of Listeria monocytogenes. Appl Environ Microbiol. 1992 Dec;58(12):3959–3963. doi: 10.1128/aem.58.12.3959-3963.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pourkomailian B., Booth I. R. Glycine betaine transport by Staphylococcus aureus: evidence for two transport systems and for their possible roles in osmoregulation. J Gen Microbiol. 1992 Dec;138(12):2515–2518. doi: 10.1099/00221287-138-12-2515. [DOI] [PubMed] [Google Scholar]
  17. Schuchat A., Deaver K. A., Wenger J. D., Plikaytis B. D., Mascola L., Pinner R. W., Reingold A. L., Broome C. V. Role of foods in sporadic listeriosis. I. Case-control study of dietary risk factors. The Listeria Study Group. JAMA. 1992 Apr 15;267(15):2041–2045. [PubMed] [Google Scholar]
  18. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  19. Sun A. N., Camilli A., Portnoy D. A. Isolation of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect Immun. 1990 Nov;58(11):3770–3778. doi: 10.1128/iai.58.11.3770-3778.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Trivett T. L., Meyer E. A. Citrate cycle and related metabolism of Listeria monocytogenes. J Bacteriol. 1971 Sep;107(3):770–779. doi: 10.1128/jb.107.3.770-779.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Verheul A., Hagting A., Amezaga M. R., Booth I. R., Rombouts F. M., Abee T. A di- and tripeptide transport system can supply Listeria monocytogenes Scott A with amino acids essential for growth. Appl Environ Microbiol. 1995 Jan;61(1):226–233. doi: 10.1128/aem.61.1.226-233.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Walker S. J., Archer P., Banks J. G. Growth of Listeria monocytogenes at refrigeration temperatures. J Appl Bacteriol. 1990 Feb;68(2):157–162. doi: 10.1111/j.1365-2672.1990.tb02561.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES