Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Nov;178(21):6133–6139. doi: 10.1128/jb.178.21.6133-6139.1996

An N-terminal mutation in the bacteriophage T4 motA gene yields a protein that binds DNA but is defective for activation of transcription.

J S Gerber 1, D M Hinton 1
PMCID: PMC178481  PMID: 8892810

Abstract

The bacteriophage T4 MotA protein is a transcriptional activator of T4-modified host RNA polymerase and is required for activation of the middle class of T4 promoters. MotA alone binds to the -30 region of T4 middle promoters, a region that contains the MotA box consensus sequence [(t/a)(t/a)TGCTT(t/c)A]. We report the isolation and characterization of a protein designated Mot21, in which the first 8 codons of the wild-type motA sequence have been replaced with 11 different codons. In gel retardation assays, Mot21 and MotA bind DNA containing the T4 middle promoter P(uvsX) similarly, and the proteins yield similar footprints on P(uvsX). However, Mot21 is severely defective in the activation of transcription. On native protein gels, a new protein species is seen after incubation of the sigma70 subunit of RNA polymerase and wild-type MotA protein, suggesting a direct protein-protein contact between MotA and sigma70. Mot21 fails to form this complex, suggesting that this interaction is necessary for transcriptional activation and that the Mot21 defect arises because Mot21 cannot form this contact like the wild-type activator.

Full Text

The Full Text of this article is available as a PDF (998.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell A., Gaston K., Williams R., Chapman K., Kolb A., Buc H., Minchin S., Williams J., Busby S. Mutations that alter the ability of the Escherichia coli cyclic AMP receptor protein to activate transcription. Nucleic Acids Res. 1990 Dec 25;18(24):7243–7250. doi: 10.1093/nar/18.24.7243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Busby S., Ebright R. H. Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell. 1994 Dec 2;79(5):743–746. doi: 10.1016/0092-8674(94)90063-9. [DOI] [PubMed] [Google Scholar]
  3. Finnin M. S., Hoffman D. W., Kreuzer K. N., Porter S. J., Schmidt R. P., White S. W. The MotA protein from bacteriophage T4 contains two domains. Preliminary structural analysis by X-ray diffraction and nuclear magnetic resonance. J Mol Biol. 1993 Jul 5;232(1):301–304. doi: 10.1006/jmbi.1993.1384. [DOI] [PubMed] [Google Scholar]
  4. Finnin M. S., Hoffman D. W., White S. W. The DNA-binding domain of the MotA transcription factor from bacteriophage T4 shows structural similarity to the TATA-binding protein. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10972–10976. doi: 10.1073/pnas.91.23.10972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Guild N., Gayle M., Sweeney R., Hollingsworth T., Modeer T., Gold L. Transcriptional activation of bacteriophage T4 middle promoters by the motA protein. J Mol Biol. 1988 Jan 20;199(2):241–258. doi: 10.1016/0022-2836(88)90311-7. [DOI] [PubMed] [Google Scholar]
  6. Hall D. H., Snyder R. D. Suppressors of mutations in the rII gene of bacteriophage T4 affect promoter utilization. Genetics. 1981 Jan;97(1):1–9. doi: 10.1093/genetics/97.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harrison S. C. A structural taxonomy of DNA-binding domains. Nature. 1991 Oct 24;353(6346):715–719. doi: 10.1038/353715a0. [DOI] [PubMed] [Google Scholar]
  8. Hernandez V. J., Hsu L. M., Cashel M. Conserved region 3 of Escherichia coli final sigma70 is implicated in the process of abortive transcription. J Biol Chem. 1996 Aug 2;271(31):18775–18779. doi: 10.1074/jbc.271.31.18775. [DOI] [PubMed] [Google Scholar]
  9. Hinton D. M., March-Amegadzie R., Gerber J. S., Sharma M. Bacteriophage T4 middle transcription system: T4-modified RNA polymerase; AsiA, a sigma 70 binding protein; and transcriptional activator MotA. Methods Enzymol. 1996;274:43–57. doi: 10.1016/s0076-6879(96)74007-7. [DOI] [PubMed] [Google Scholar]
  10. Hinton D. M., March-Amegadzie R., Gerber J. S., Sharma M. Characterization of pre-transcription complexes made at a bacteriophage T4 middle promoter: involvement of the T4 MotA activator and the T4 AsiA protein, a sigma 70 binding protein, in the formation of the open complex. J Mol Biol. 1996 Feb 23;256(2):235–248. doi: 10.1006/jmbi.1996.0082. [DOI] [PubMed] [Google Scholar]
  11. Hinton D. M., Nossal N. G. Bacteriophage T4 DNA replication protein 61. Cloning of the gene and purification of the expressed protein. J Biol Chem. 1985 Oct 15;260(23):12858–12865. [PubMed] [Google Scholar]
  12. Hinton D. M., Silver L. L., Nossal N. G. Bacteriophage T4 DNA replication protein 41. Cloning of the gene and purification of the expressed protein. J Biol Chem. 1985 Oct 15;260(23):12851–12857. [PubMed] [Google Scholar]
  13. Hinton D. M. Transcription from a bacteriophage T4 middle promoter using T4 motA protein and phage-modified RNA polymerase. J Biol Chem. 1991 Sep 25;266(27):18034–18044. [PubMed] [Google Scholar]
  14. Hochschild A., Irwin N., Ptashne M. Repressor structure and the mechanism of positive control. Cell. 1983 Feb;32(2):319–325. doi: 10.1016/0092-8674(83)90451-8. [DOI] [PubMed] [Google Scholar]
  15. Homyk T., Jr, Rodriguez A., Weil J. Characterization of T4 mutants that partially suppress the inability of T4rII to grow in Lambda lysogens. Genetics. 1976 Jul;83(3 PT2):477–487. [PMC free article] [PubMed] [Google Scholar]
  16. Homyk T., Jr, Weil J. Deletion analysis of two nonessential regions of the T4 genome. Virology. 1974 Oct;61(2):505–523. doi: 10.1016/0042-6822(74)90286-4. [DOI] [PubMed] [Google Scholar]
  17. Ishihama A. Protein-protein communication within the transcription apparatus. J Bacteriol. 1993 May;175(9):2483–2489. doi: 10.1128/jb.175.9.2483-2489.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johnson J. R., Hall D. H. Isolation and characterization of mutants of bacteriophage T4 resistant to folate analogs. Virology. 1973 Jun;53(2):413–426. doi: 10.1016/0042-6822(73)90221-3. [DOI] [PubMed] [Google Scholar]
  19. Kolb A., Busby S., Buc H., Garges S., Adhya S. Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem. 1993;62:749–795. doi: 10.1146/annurev.bi.62.070193.003533. [DOI] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. March-Amegadzie R., Hinton D. M. The bacteriophage T4 middle promoter PuvsX: analysis of regions important for binding of the T4 transcriptional activator MotA and for activation of transcription. Mol Microbiol. 1995 Feb;15(4):649–660. doi: 10.1111/j.1365-2958.1995.tb02374.x. [DOI] [PubMed] [Google Scholar]
  22. Mattson T., Richardson J., Goodin D. Mutant of bacteriophage T4D affecting expression of many early genes. Nature. 1974 Jul 5;250(461):48–50. doi: 10.1038/250048a0. [DOI] [PubMed] [Google Scholar]
  23. Mattson T., Van Houwe G., Epstein R. H. Isolation and characterization of conditional lethal mutations in the mot gene of bacteriophage T4. J Mol Biol. 1978 Dec 15;126(3):551–570. doi: 10.1016/0022-2836(78)90058-x. [DOI] [PubMed] [Google Scholar]
  24. Menon K. P., Lee N. L. Activation of ara operons by a truncated AraC protein does not require inducer. Proc Natl Acad Sci U S A. 1990 May;87(10):3708–3712. doi: 10.1073/pnas.87.10.3708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mitchell P. J., Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science. 1989 Jul 28;245(4916):371–378. doi: 10.1126/science.2667136. [DOI] [PubMed] [Google Scholar]
  26. Orsini G., Brody E. N. Phage T4 DNA codes for two distinct 10-kDa proteins which strongly bind to RNA polymerase. Virology. 1988 Feb;162(2):397–405. doi: 10.1016/0042-6822(88)90480-1. [DOI] [PubMed] [Google Scholar]
  27. Pulitzer J. F., Coppo A., Caruso M. Host--virus interactions in the control of T4 prereplicative transcription. II. Interaction between tabC (rho) mutants and T4 mot mutants. J Mol Biol. 1979 Dec 25;135(4):979–997. doi: 10.1016/0022-2836(79)90523-0. [DOI] [PubMed] [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Savery N., Rhodius V., Busby S. Protein-protein interactions during transcription activation: the case of the Escherichia coli cyclic AMP receptor protein. Philos Trans R Soc Lond B Biol Sci. 1996 Apr 29;351(1339):543–550. doi: 10.1098/rstb.1996.0053. [DOI] [PubMed] [Google Scholar]
  30. Schmidt R. P., Kreuzer K. N. Purified MotA protein binds the -30 region of a bacteriophage T4 middle-mode promoter and activates transcription in vitro. J Biol Chem. 1992 Jun 5;267(16):11399–11407. [PubMed] [Google Scholar]
  31. Sharma M., Ellis R. L., Hinton D. M. Identification of a family of bacteriophage T4 genes encoding proteins similar to those present in group I introns of fungi and phage. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6658–6662. doi: 10.1073/pnas.89.14.6658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shinedling S., Gayle M., Pribnow D., Gold L. Mutations affecting translation of the bacteriophage T4 rIIB gene cloned in Escherichia coli. Mol Gen Genet. 1987 May;207(2-3):224–232. doi: 10.1007/BF00331582. [DOI] [PubMed] [Google Scholar]
  33. Stevens A. New small polypeptides associated with DNA-dependent RNA polymerase of Escherichia coli after infection with bacteriophage T4. Proc Natl Acad Sci U S A. 1972 Mar;69(3):603–607. doi: 10.1073/pnas.69.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stevens A., Rhoton J. C. Characterization of an inhibitor causing potassium chloride sensitivity of an RNA polymerase from T4 phage-infected Escherichia coli. Biochemistry. 1975 Nov 18;14(23):5074–5079. doi: 10.1021/bi00694a007. [DOI] [PubMed] [Google Scholar]
  35. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  36. Uzan M., Brody E., Favre R. Nucleotide sequence and control of transcription of the bacteriophage T4 motA regulatory gene. Mol Microbiol. 1990 Sep;4(9):1487–1496. doi: 10.1111/j.1365-2958.1990.tb02059.x. [DOI] [PubMed] [Google Scholar]
  37. Williams R. M., Rhodius V. A., Bell A. I., Kolb A., Busby S. J. Orientation of functional activating regions in the Escherichia coli CRP protein during transcription activation at class II promoters. Nucleic Acids Res. 1996 Mar 15;24(6):1112–1118. doi: 10.1093/nar/24.6.1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Woodworth D. L., Kreuzer K. N. A system of transposon mutagenesis for bacteriophage T4. Mol Microbiol. 1992 May;6(10):1289–1296. doi: 10.1111/j.1365-2958.1992.tb00850.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES