Abstract
The structure of the endospore cell wall peptidoglycan of Bacillus subtilis has been examined. Spore peptidoglycan was produced by the development of a method based on chemical permeabilization of the spore coats and enzymatic hydrolysis of the peptidoglycan. The resulting muropeptides which were >97% pure were analyzed by reverse-phase high-performance liquid chromatography, amino acid analysis, and mass spectrometry. This revealed that 49% of the muramic acid residues in the glycan backbone were present in the delta-lactam form which occurred predominantly every second muramic acid. The glycosidic bonds adjacent to the muramic acid delta-lactam residues were resistant to the action of muramidases. Of the muramic acid residues, 25.7 and 23.3% were substituted with a tetrapeptide and a single L-alanine, respectively. Only 2% of the muramic acids had tripeptide side chains and may constitute the primordial cell wall, the remainder of the peptidoglycan being spore cortex. The spore peptidoglycan is very loosely cross-linked at only 2.9% of the muramic acid residues, a figure approximately 11-fold less than that of the vegetative cell wall. The peptidoglycan from strain AA110 (dacB) had fivefold-greater cross-linking (14.4%) than the wild type and an altered ratio of muramic acid substituents having 37.0, 46.3, and 12.3% delta-lactam, tetrapeptide, and single L-alanine, respectively. This suggests a role for the DacB protein (penicillin-binding protein 5*) in cortex biosynthesis. The sporulation-specific putative peptidoglycan hydrolase CwlD plays a pivotal role in the establishment of the mature spore cortex structure since strain AA107 (cwlD) has spore peptidoglycan which is completely devoid of muramic acid delta-lactam residues. Despite this drastic change in peptidoglycan structure, the spores are still stable but are unable to germinate. The role of delta-lactam and other spore peptidoglycan structural features in the maintenance of dormancy, heat resistance, and germination is discussed.
Full Text
The Full Text of this article is available as a PDF (293.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALDERTON G., SNELL N. Base exchange and heat resistance in bacterial spores. Biochem Biophys Res Commun. 1963 Jan 31;10:139–143. doi: 10.1016/0006-291x(63)90039-1. [DOI] [PubMed] [Google Scholar]
- Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buchanan C. E., Gustafson A. Mutagenesis and mapping of the gene for a sporulation-specific penicillin-binding protein in Bacillus subtilis. J Bacteriol. 1992 Aug;174(16):5430–5435. doi: 10.1128/jb.174.16.5430-5435.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buchanan C. E., Ling M. L. Isolation and sequence analysis of dacB, which encodes a sporulation-specific penicillin-binding protein in Bacillus subtilis. J Bacteriol. 1992 Mar;174(6):1717–1725. doi: 10.1128/jb.174.6.1717-1725.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buchanan C. E., Neyman S. L. Correlation of penicillin-binding protein composition with different functions of two membranes in Bacillus subtilis forespores. J Bacteriol. 1986 Feb;165(2):498–503. doi: 10.1128/jb.165.2.498-503.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cano R. J., Borucki M. K. Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science. 1995 May 19;268(5213):1060–1064. doi: 10.1126/science.7538699. [DOI] [PubMed] [Google Scholar]
- Daniel R. A., Drake S., Buchanan C. E., Scholle R., Errington J. The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. J Mol Biol. 1994 Jan 7;235(1):209–220. doi: 10.1016/s0022-2836(05)80027-0. [DOI] [PubMed] [Google Scholar]
- Dougherty T. J. Analysis of Neisseria gonorrhoeae peptidoglycan by reverse-phase, high-pressure liquid chromatography. J Bacteriol. 1985 Jul;163(1):69–74. doi: 10.1128/jb.163.1.69-74.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Errington J. Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev. 1993 Mar;57(1):1–33. doi: 10.1128/mr.57.1.1-33.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forrest T. M., Wilson G. E., Pan Y., Schaefer J. Characterization of cross-linking of cell walls of Bacillus subtilis by a combination of magic-angle spinning NMR and gas chromatography-mass spectrometry of both intact and hydrolyzed 13C- and 15N-labeled cell-wall peptidoglycan. J Biol Chem. 1991 Dec 25;266(36):24485–24491. [PubMed] [Google Scholar]
- Foster S. J., Johnstone K. Purification and properties of a germination-specific cortex-lytic enzyme from spores of Bacillus megaterium KM. Biochem J. 1987 Mar 1;242(2):573–579. doi: 10.1042/bj2420573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gally D., Cooper S. Peptidoglycan synthesis in Salmonella typhimurium 2616. J Gen Microbiol. 1993 Jul;139(7):1469–1476. doi: 10.1099/00221287-139-7-1469. [DOI] [PubMed] [Google Scholar]
- Guinand M., Michel G., Balassa G. Lytic enzymes in sporulating Bacillus subtilis. Biochem Biophys Res Commun. 1976 Feb 23;68(4):1287–1293. doi: 10.1016/0006-291x(76)90336-3. [DOI] [PubMed] [Google Scholar]
- Guinand M., Vacheron M. J., Michel G., Tipper D. J. Location of peptidoglycan lytic enzymes in Bacillus sphaericus. J Bacteriol. 1979 Apr;138(1):126–132. doi: 10.1128/jb.138.1.126-132.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imae Y., Strominger J. L. Relationship between cortex content and properties of Bacillus sphaericus spores. J Bacteriol. 1976 May;126(2):907–913. doi: 10.1128/jb.126.2.907-913.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jayatissa P. M., Rose A. H. Role of wall phosphomannan in flocculation of Saccharomyces cerevisiae. J Gen Microbiol. 1976 Sep;96(1):165–174. doi: 10.1099/00221287-96-1-165. [DOI] [PubMed] [Google Scholar]
- Kingan S. L., Ensign J. C. Isolation and characterization of three autolytic enzymes associated with sporulation of Bacillus thuringiensis var. thuringiensis. J Bacteriol. 1968 Sep;96(3):629–638. doi: 10.1128/jb.96.3.629-638.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohlrausch U., Höltje J. V. Analysis of murein and murein precursors during antibiotic-induced lysis of Escherichia coli. J Bacteriol. 1991 Jun;173(11):3425–3431. doi: 10.1128/jb.173.11.3425-3431.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linnett P. E., Tipper D. J. Transcriptional control of peptidoglycan precursor synthesis during sporulation in Bacillus sphaericus. J Bacteriol. 1976 Feb;125(2):565–574. doi: 10.1128/jb.125.2.565-574.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Makino S., Ito N., Inoue T., Miyata S., Moriyama R. A spore-lytic enzyme released from Bacillus cereus spores during germination. Microbiology. 1994 Jun;140(Pt 6):1403–1410. doi: 10.1099/00221287-140-6-1403. [DOI] [PubMed] [Google Scholar]
- Margot P., Roten C. A., Karamata D. N-acetylmuramoyl-L-alanine amidase assay based on specific radioactive labeling of muropeptide L-alanine: quantitation of the enzyme activity in the autolysin deficient Bacillus subtilis 168, flaD strain. Anal Biochem. 1991 Oct;198(1):15–18. doi: 10.1016/0003-2697(91)90499-j. [DOI] [PubMed] [Google Scholar]
- Martin S. A., Rosenthal R. S., Biemann K. Fast atom bombardment mass spectrometry and tandem mass spectrometry of biologically active peptidoglycan monomers from Neisseria gonorrhoeae. J Biol Chem. 1987 Jun 5;262(16):7514–7522. [PubMed] [Google Scholar]
- Pandey N. K., Aronson A. I. Properties of the Bacillus subtilis spore coat. J Bacteriol. 1979 Mar;137(3):1208–1218. doi: 10.1128/jb.137.3.1208-1218.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Popham D. L., Illades-Aguiar B., Setlow P. The Bacillus subtilis dacB gene, encoding penicillin-binding protein 5*, is part of a three-gene operon required for proper spore cortex synthesis and spore core dehydration. J Bacteriol. 1995 Aug;177(16):4721–4729. doi: 10.1128/jb.177.16.4721-4729.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Popham D. L., Setlow P. Cloning, nucleotide sequence, and mutagenesis of the Bacillus subtilis ponA operon, which codes for penicillin-binding protein (PBP) 1 and a PBP-related factor. J Bacteriol. 1995 Jan;177(2):326–335. doi: 10.1128/jb.177.2.326-335.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Popham D. L., Setlow P. Cloning, nucleotide sequence, and regulation of the Bacillus subtilis pbpE operon, which codes for penicillin-binding protein 4* and an apparent amino acid racemase. J Bacteriol. 1993 May;175(10):2917–2925. doi: 10.1128/jb.175.10.2917-2925.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Popham D. L., Setlow P. Cloning, nucleotide sequence, and regulation of the Bacillus subtilis pbpF gene, which codes for a putative class A high-molecular-weight penicillin-binding protein. J Bacteriol. 1993 Aug;175(15):4870–4876. doi: 10.1128/jb.175.15.4870-4876.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Popham D. L., Setlow P. Cloning, nucleotide sequence, mutagenesis, and mapping of the Bacillus subtilis pbpD gene, which codes for penicillin-binding protein 4. J Bacteriol. 1994 Dec;176(23):7197–7205. doi: 10.1128/jb.176.23.7197-7205.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Popham D. L., Setlow P. The cortical peptidoglycan from spores of Bacillus megaterium and Bacillus subtilis is not highly cross-linked. J Bacteriol. 1993 May;175(9):2767–2769. doi: 10.1128/jb.175.9.2767-2769.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quintela J. C., Pittenauer E., Allmaier G., Arán V., de Pedro M. A. Structure of peptidoglycan from Thermus thermophilus HB8. J Bacteriol. 1995 Sep;177(17):4947–4962. doi: 10.1128/jb.177.17.4947-4962.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sekiguchi J., Akeo K., Yamamoto H., Khasanov F. K., Alonso J. C., Kuroda A. Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis. . J Bacteriol. 1995 Oct;177(19):5582–5589. doi: 10.1128/jb.177.19.5582-5589.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith T. J., Foster S. J. Characterization of the involvement of two compensatory autolysins in mother cell lysis during sporulation of Bacillus subtilis 168. J Bacteriol. 1995 Jul;177(13):3855–3862. doi: 10.1128/jb.177.13.3855-3862.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snowden M. A., Perkins H. R., Wyke A. W., Hayes M. V., Ward J. B. Cross-linking and O-acetylation of newly synthesized peptidoglycan in Staphylococcus aureus H. J Gen Microbiol. 1989 Nov;135(11):3015–3022. doi: 10.1099/00221287-135-11-3015. [DOI] [PubMed] [Google Scholar]
- Sowell M. O., Buchanan C. E. Changes in penicillin-binding proteins during sporulation of Bacillus subtilis. J Bacteriol. 1983 Mar;153(3):1331–1337. doi: 10.1128/jb.153.3.1331-1337.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stewart G. S., Johnstone K., Hagelberg E., Ellar D. J. Commitment of bacterial spores to germinate. A measure of the trigger reaction. Biochem J. 1981 Jul 15;198(1):101–106. doi: 10.1042/bj1980101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tipper D. J., Linnett P. E. Distribution of peptidoglycan synthetase activities between sporangia and forespores in sporulating cells of Bacillus sphaericus. J Bacteriol. 1976 Apr;126(1):213–221. doi: 10.1128/jb.126.1.213-221.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Todd J. A., Bone E. J., Ellar D. J. The sporulation-specific penicillin-binding protein 5a from Bacillus subtilis is a DD-carboxypeptidase in vitro. Biochem J. 1985 Sep 15;230(3):825–828. doi: 10.1042/bj2300825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Todd J. A., Roberts A. N., Johnstone K., Piggot P. J., Winter G., Ellar D. J. Reduced heat resistance of mutant spores after cloning and mutagenesis of the Bacillus subtilis gene encoding penicillin-binding protein 5. J Bacteriol. 1986 Jul;167(1):257–264. doi: 10.1128/jb.167.1.257-264.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warburg R. J., Buchanan C. E., Parent K., Halvorson H. O. A detailed study of gerJ mutants of Bacillus subtilis. J Gen Microbiol. 1986 Aug;132(8):2309–2319. doi: 10.1099/00221287-132-8-2309. [DOI] [PubMed] [Google Scholar]
- Warth A. D. Molecular structure of the bacterial spore. Adv Microb Physiol. 1978;17:1–45. doi: 10.1016/s0065-2911(08)60056-9. [DOI] [PubMed] [Google Scholar]
- Warth A. D., Strominger J. L. Structure of the peptidoglycan from spores of Bacillus subtilis. Biochemistry. 1972 Apr 11;11(8):1389–1396. doi: 10.1021/bi00758a010. [DOI] [PubMed] [Google Scholar]
- Warth A. D., Strominger J. L. Structure of the peptidoglycan of bacterial spores: occurrence of the lactam of muramic acid. Proc Natl Acad Sci U S A. 1969 Oct;64(2):528–535. doi: 10.1073/pnas.64.2.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wickus G. G., Warth A. D., Strominger J. L. Appearance of muramic lactam during cortex synthesis in sporulating cultures of Bacillus cereus and Bacillus megaterium. J Bacteriol. 1972 Aug;111(2):625–627. doi: 10.1128/jb.111.2.625-627.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu J. J., Schuch R., Piggot P. J. Characterization of a Bacillus subtilis sporulation operon that includes genes for an RNA polymerase sigma factor and for a putative DD-carboxypeptidase. J Bacteriol. 1992 Aug;174(15):4885–4892. doi: 10.1128/jb.174.15.4885-4892.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanouri A., Daniel R. A., Errington J., Buchanan C. E. Cloning and sequencing of the cell division gene pbpB, which encodes penicillin-binding protein 2B in Bacillus subtilis. J Bacteriol. 1993 Dec;175(23):7604–7616. doi: 10.1128/jb.175.23.7604-7616.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang J., Fitz-James P. C., Aronson A. I. Cloning and characterization of a cluster of genes encoding polypeptides present in the insoluble fraction of the spore coat of Bacillus subtilis. J Bacteriol. 1993 Jun;175(12):3757–3766. doi: 10.1128/jb.175.12.3757-3766.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Jonge B. L., Chang Y. S., Gage D., Tomasz A. Peptidoglycan composition in heterogeneous Tn551 mutants of a methicillin-resistant Staphylococcus aureus strain. J Biol Chem. 1992 Jun 5;267(16):11255–11259. [PubMed] [Google Scholar]