Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Nov;178(21):6192–6199. doi: 10.1128/jb.178.21.6192-6199.1996

A chimeric disposition of the elongation factor genes in Rickettsia prowazekii.

A C Syvänen 1, H Amiri 1, A Jamal 1, S G Andersson 1, C G Kurland 1
PMCID: PMC178489  PMID: 8892818

Abstract

An exceptional disposition of the elongation factor genes is observed in Rickettsia prowazekii, in which there is only one tuf gene, which is distant from the lone fus gene. In contrast, the closely related bacterium Agrobacterium tumefaciens has the normal bacterial arrangement of two tuf genes, of which one is tightly linked to the fus gene. Analysis of the flanking sequences of the single tuf gene in R. prowazekii shows that it is preceded by two of the four tRNA genes located in the 5' region of the Escherichia coli tufB gene and that it is followed by rpsJ as well as associated ribosomal protein genes, which in E. coli are located downstream of the tufA gene. The fus gene is located within the str operon and is followed by one tRNA gene as well as by the genes secE and nusG, which are located in the 3' region of tufB in E. coli. This atypical disposition of genes suggests that intrachromosomal recombination between duplicated tuf genes has contributed to the evolution of the unique genomic architecture of R. prowazekii.

Full Text

The Full Text of this article is available as a PDF (405.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allardet-Servent A., Michaux-Charachon S., Jumas-Bilak E., Karayan L., Ramuz M. Presence of one linear and one circular chromosome in the Agrobacterium tumefaciens C58 genome. J Bacteriol. 1993 Dec;175(24):7869–7874. doi: 10.1128/jb.175.24.7869-7874.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. An G., Friesen J. D. The nucleotide sequence of tufB and four nearby tRNA structural genes of Escherichia coli. Gene. 1980 Dec;12(1-2):33–39. doi: 10.1016/0378-1119(80)90013-x. [DOI] [PubMed] [Google Scholar]
  4. Andersson S. G., Zomorodipour A., Winkler H. H., Kurland C. G. Unusual organization of the rRNA genes in Rickettsia prowazekii. J Bacteriol. 1995 Jul;177(14):4171–4175. doi: 10.1128/jb.177.14.4171-4175.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Auer J., Lechner K., Böck A. Gene organization and structure of two transcriptional units from Methanococcus coding for ribosomal proteins and elongation factors. Can J Microbiol. 1989 Jan;35(1):200–204. doi: 10.1139/m89-031. [DOI] [PubMed] [Google Scholar]
  6. Buttarelli F. R., Calogero R. A., Tiboni O., Gualerzi C. O., Pon C. L. Characterization of the str operon genes from Spirulina platensis and their evolutionary relationship to those of other prokaryotes. Mol Gen Genet. 1989 May;217(1):97–104. doi: 10.1007/BF00330947. [DOI] [PubMed] [Google Scholar]
  7. Cammarano P., Palm P., Creti R., Ceccarelli E., Sanangelantoni A. M., Tiboni O. Early evolutionary relationships among known life forms inferred from elongation factor EF-2/EF-G sequences: phylogenetic coherence and structure of the archaeal domain. J Mol Evol. 1992 May;34(5):396–405. doi: 10.1007/BF00162996. [DOI] [PubMed] [Google Scholar]
  8. Campbell A. M. Chromosomal insertion sites for phages and plasmids. J Bacteriol. 1992 Dec;174(23):7495–7499. doi: 10.1128/jb.174.23.7495-7499.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Casanova J. L., Pannetier C., Jaulin C., Kourilsky P. Optimal conditions for directly sequencing double-stranded PCR products with sequenase. Nucleic Acids Res. 1990 Jul 11;18(13):4028–4028. doi: 10.1093/nar/18.13.4028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chalker D. L., Sandmeyer S. B. Transfer RNA genes are genomic targets for de Novo transposition of the yeast retrotransposon Ty3. Genetics. 1990 Dec;126(4):837–850. doi: 10.1093/genetics/126.4.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Downing W. L., Sullivan S. L., Gottesman M. E., Dennis P. P. Sequence and transcriptional pattern of the essential Escherichia coli secE-nusG operon. J Bacteriol. 1990 Mar;172(3):1621–1627. doi: 10.1128/jb.172.3.1621-1627.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dubnau E., Weir J., Nair G., Carter L., 3rd, Moran C., Jr, Smith I. Bacillus sporulation gene spo0H codes for sigma 30 (sigma H). J Bacteriol. 1988 Mar;170(3):1054–1062. doi: 10.1128/jb.170.3.1054-1062.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Eremeeva M. E., Roux V., Raoult D. Determination of genome size and restriction pattern polymorphism of Rickettsia prowazekii and Rickettsia typhi by pulsed field gel electrophoresis. FEMS Microbiol Lett. 1993 Aug 15;112(1):105–112. doi: 10.1111/j.1574-6968.1993.tb06431.x. [DOI] [PubMed] [Google Scholar]
  14. Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G., Kelley J. M. The minimal gene complement of Mycoplasma genitalium. Science. 1995 Oct 20;270(5235):397–403. doi: 10.1126/science.270.5235.397. [DOI] [PubMed] [Google Scholar]
  15. Furano A. V. Direct demonstration of duplicate tuf genes in enteric bacteria. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3104–3108. doi: 10.1073/pnas.75.7.3104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goldstein B. P., Zaffaroni G., Tiboni O., Amiri B., Denaro M. Determination of the number of tuf genes in Chlamydia trachomatis and Neisseria gonorrhoeae. FEMS Microbiol Lett. 1989 Aug;51(3):305–309. doi: 10.1016/0378-1097(89)90415-1. [DOI] [PubMed] [Google Scholar]
  17. Heinrich T., Schröder W., Erdmann V. A., Hartmann R. K. Identification of the gene encoding transcription factor NusG of Thermus thermophilus. J Bacteriol. 1992 Dec;174(23):7859–7863. doi: 10.1128/jb.174.23.7859-7863.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Howe C. J., Barker R. F., Bowman C. M., Dyer T. A. Common features of three inversions in wheat chloroplast DNA. Curr Genet. 1988 Apr;13(4):343–349. doi: 10.1007/BF00424430. [DOI] [PubMed] [Google Scholar]
  19. Jaskunas S. R., Fallon A. M., Nomura M. Identification and organization of ribosomal protein genes of Escherichia coli carried by lambdafus2 transducing phage. J Biol Chem. 1977 Oct 25;252(20):7323–7336. [PubMed] [Google Scholar]
  20. Jaskunas S. R., Lindahl L., Nomura M. Identification of two copies of the gene for the elongation factor EF-Tu in E. coli. Nature. 1975 Oct 9;257(5526):458–462. doi: 10.1038/257458a0. [DOI] [PubMed] [Google Scholar]
  21. Jeong S. M., Yoshikawa H., Takahashi H. Isolation and characterization of the secE homologue gene of Bacillus subtilis. Mol Microbiol. 1993 Oct;10(1):133–142. doi: 10.1111/j.1365-2958.1993.tb00910.x. [DOI] [PubMed] [Google Scholar]
  22. Keeling P. J., Charlebois R. L., Doolittle W. F. Archaebacterial genomes: eubacterial form and eukaryotic content. Curr Opin Genet Dev. 1994 Dec;4(6):816–822. doi: 10.1016/0959-437x(94)90065-5. [DOI] [PubMed] [Google Scholar]
  23. Kurland C. G. Evolution of mitochondrial genomes and the genetic code. Bioessays. 1992 Oct;14(10):709–714. doi: 10.1002/bies.950141013. [DOI] [PubMed] [Google Scholar]
  24. Lagerström M., Parik J., Malmgren H., Stewart J., Pettersson U., Landegren U. Capture PCR: efficient amplification of DNA fragments adjacent to a known sequence in human and YAC DNA. PCR Methods Appl. 1991 Nov;1(2):111–119. doi: 10.1101/gr.1.2.111. [DOI] [PubMed] [Google Scholar]
  25. Li J., Horwitz R., McCracken S., Greenblatt J. NusG, a new Escherichia coli elongation factor involved in transcriptional antitermination by the N protein of phage lambda. J Biol Chem. 1992 Mar 25;267(9):6012–6019. [PubMed] [Google Scholar]
  26. Liao D., Dennis P. P. The organization and expression of essential transcription translation component genes in the extremely thermophilic eubacterium Thermotoga maritima. J Biol Chem. 1992 Nov 15;267(32):22787–22797. [PubMed] [Google Scholar]
  27. Ludwig W., Weizenegger M., Betzl D., Leidel E., Lenz T., Ludvigsen A., Möllenhoff D., Wenzig P., Schleifer K. H. Complete nucleotide sequences of seven eubacterial genes coding for the elongation factor Tu: functional, structural and phylogenetic evaluations. Arch Microbiol. 1990;153(3):241–247. doi: 10.1007/BF00249075. [DOI] [PubMed] [Google Scholar]
  28. Marschalek R., Brechner T., Amon-Böhm E., Dingermann T. Transfer RNA genes: landmarks for integration of mobile genetic elements in Dictyostelium discoideum. Science. 1989 Jun 23;244(4911):1493–1496. doi: 10.1126/science.2567533. [DOI] [PubMed] [Google Scholar]
  29. Mason S. W., Greenblatt J. Assembly of transcription elongation complexes containing the N protein of phage lambda and the Escherichia coli elongation factors NusA, NusB, NusG, and S10. Genes Dev. 1991 Aug;5(8):1504–1512. doi: 10.1101/gad.5.8.1504. [DOI] [PubMed] [Google Scholar]
  30. Meens J., Klose M., Freudl R. The Staphylococcus carnosus secE gene: cloning, nucleotide sequence, and functional characterization in Escherichia coli secE mutant strains. FEMS Microbiol Lett. 1994 Mar 15;117(1):113–119. doi: 10.1111/j.1574-6968.1994.tb06751.x. [DOI] [PubMed] [Google Scholar]
  31. Meng B. Y., Shinozaki K., Sugiura M. Genes for the ribosomal proteins S12 and S7 and elongation factors EF-G and EF-Tu of the cyanobacterium, Anacystis nidulans: structural homology between 16S rRNA and S7 mRNA. Mol Gen Genet. 1989 Mar;216(1):25–30. doi: 10.1007/BF00332226. [DOI] [PubMed] [Google Scholar]
  32. Mickel F. S., Spremulli L. L. Organization of the genes for protein synthesis elongation factors Tu and G in the cyanobacterium Anacystis nidulans. J Bacteriol. 1986 Apr;166(1):78–82. doi: 10.1128/jb.166.1.78-82.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Moritz C., Brown W. M. Tandem duplication of D-loop and ribosomal RNA sequences in lizard mitochondrial DNA. Science. 1986 Sep 26;233(4771):1425–1427. doi: 10.1126/science.3018925. [DOI] [PubMed] [Google Scholar]
  34. Nelson I., Degoul F., Obermaier-Kusser B., Romero N., Borrone C., Marsac C., Vayssiere J. L., Gerbitz K., Fardeau M., Ponsot G. Mapping of heteroplasmic mitochondrial DNA deletions in Kearns-Sayre syndrome. Nucleic Acids Res. 1989 Oct 25;17(20):8117–8124. doi: 10.1093/nar/17.20.8117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Neumann-Spallart C., Jakowitsch J., Kraus M., Brandtner M., Bohnert H. J., Löffelhardt W. rps10, unreported for plastid DNAs, is located on the cyanelle genome of Cyanophora paradoxa and is cotranscribed with the str operon genes. Curr Genet. 1991 Apr;19(4):313–315. doi: 10.1007/BF00355061. [DOI] [PubMed] [Google Scholar]
  36. Ohama T., Yamao F., Muto A., Osawa S. Organization and codon usage of the streptomycin operon in Micrococcus luteus, a bacterium with a high genomic G + C content. J Bacteriol. 1987 Oct;169(10):4770–4777. doi: 10.1128/jb.169.10.4770-4777.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Olsen G. J., Woese C. R., Overbeek R. The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol. 1994 Jan;176(1):1–6. doi: 10.1128/jb.176.1.1-6.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pang H., Winkler H. H. Copy number of the 16S rRNA gene in Rickettsia prowazekii. J Bacteriol. 1993 Jun;175(12):3893–3896. doi: 10.1128/jb.175.12.3893-3896.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Post L. E., Nomura M. DNA sequences from the str operon of Escherichia coli. J Biol Chem. 1980 May 25;255(10):4660–4666. [PubMed] [Google Scholar]
  40. Quigley F., Weil J. H. Organization and sequence of five tRNA genes and of an unidentified reading frame in the wheat chloroplast genome: evidence for gene rearrangements during the evolution of chloroplast genomes. Curr Genet. 1985;9(6):495–503. doi: 10.1007/BF00434054. [DOI] [PubMed] [Google Scholar]
  41. Reiter W. D., Palm P., Yeats S. Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res. 1989 Mar 11;17(5):1907–1914. doi: 10.1093/nar/17.5.1907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ritter A., Blum G., Emödy L., Kerenyi M., Böck A., Neuhierl B., Rabsch W., Scheutz F., Hacker J. tRNA genes and pathogenicity islands: influence on virulence and metabolic properties of uropathogenic Escherichia coli. Mol Microbiol. 1995 Jul;17(1):109–121. doi: 10.1111/j.1365-2958.1995.mmi_17010109.x. [DOI] [PubMed] [Google Scholar]
  43. Rossi J. J., Landy A. Structure and organization of the two tRNATyr gene clusters on the E. coli chromosome. Cell. 1979 Mar;16(3):523–534. doi: 10.1016/0092-8674(79)90027-8. [DOI] [PubMed] [Google Scholar]
  44. Sanangelantoni A. M., Tiboni O. The chromosomal location of genes for elongation factor Tu and ribosomal protein S10 in the cyanobacterium Spirulina platensis provides clues to the ancestral organization of the str and S10 operons in prokaryotes. J Gen Microbiol. 1993 Nov;139(11):2579–2584. doi: 10.1099/00221287-139-11-2579. [DOI] [PubMed] [Google Scholar]
  45. Sandmeyer S. B., Bilanchone V. W., Clark D. J., Morcos P., Carle G. F., Brodeur G. M. Sigma elements are position-specific for many different yeast tRNA genes. Nucleic Acids Res. 1988 Feb 25;16(4):1499–1515. doi: 10.1093/nar/16.4.1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Satoh M., Tanaka T., Kushiro A., Hakoshima T., Tomita K. Molecular cloning, nucleotide sequence and expression of the tufB gene encoding elongation factor Tu from Thermus thermophilus HB8. FEBS Lett. 1991 Aug 19;288(1-2):98–100. doi: 10.1016/0014-5793(91)81011-v. [DOI] [PubMed] [Google Scholar]
  47. Schatz P. J., Bieker K. L., Ottemann K. M., Silhavy T. J., Beckwith J. One of three transmembrane stretches is sufficient for the functioning of the SecE protein, a membrane component of the E. coli secretion machinery. EMBO J. 1991 Jul;10(7):1749–1757. doi: 10.1002/j.1460-2075.1991.tb07699.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Schramek S. Deoxyribonucleic acid base composition of members of the typhus group of rickettsiae. Acta Virol. 1972 Sep;16(5):447–447. [PubMed] [Google Scholar]
  49. Segall A., Mahan M. J., Roth J. R. Rearrangement of the bacterial chromosome: forbidden inversions. Science. 1988 Sep 9;241(4871):1314–1318. doi: 10.1126/science.3045970. [DOI] [PubMed] [Google Scholar]
  50. Sela S., Yogev D., Razin S., Bercovier H. Duplication of the tuf gene: a new insight into the phylogeny of eubacteria. J Bacteriol. 1989 Jan;171(1):581–584. doi: 10.1128/jb.171.1.581-584.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Sharp P. M. Identification of genes encoding ribosomal protein L33 from Bacillus licheniformis, Thermus thermophilus and Thermotoga maritima. Gene. 1994 Feb 11;139(1):135–136. doi: 10.1016/0378-1119(94)90537-1. [DOI] [PubMed] [Google Scholar]
  52. Syvänen A. C., Söderlund H. Quantification of polymerase chain reaction products by affinity-based collection. Methods Enzymol. 1993;218:474–490. doi: 10.1016/0076-6879(93)18036-c. [DOI] [PubMed] [Google Scholar]
  53. Tiboni O., Cantoni R., Creti R., Cammarano P., Sanangelantoni A. M. Phylogenetic depth of Thermotoga maritima inferred from analysis of the fus gene: amino acid sequence of elongation factor G and organization of the Thermotoga str operon. J Mol Evol. 1991 Aug;33(2):142–151. doi: 10.1007/BF02193628. [DOI] [PubMed] [Google Scholar]
  54. Tyeryar F. J., Jr, Weiss E., Millar D. B., Bozeman F. M., Ormsbee R. A. DNA base composition of rickettsiae. Science. 1973 Apr 27;180(4084):415–417. doi: 10.1126/science.180.4084.415. [DOI] [PubMed] [Google Scholar]
  55. Vijgenboom E., Woudt L. P., Heinstra P. W., Rietveld K., van Haarlem J., van Wezel G. P., Shochat S., Bosch L. Three tuf-like genes in the kirromycin producer Streptomyces ramocissimus. Microbiology. 1994 Apr;140(Pt 4):983–998. doi: 10.1099/00221287-140-4-983. [DOI] [PubMed] [Google Scholar]
  56. Wada K., Wada Y., Ishibashi F., Gojobori T., Ikemura T. Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res. 1992 May 11;20 (Suppl):2111–2118. doi: 10.1093/nar/20.suppl.2111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Yamamoto M., Nomura M. Organization of genes for transcription and translation in the rif region of the Escherichia coli chromosome. J Bacteriol. 1979 Jan;137(1):584–594. doi: 10.1128/jb.137.1.584-594.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Zambryski P., Tempe J., Schell J. Transfer and function of T-DNA genes from agrobacterium Ti and Ri plasmids in plants. Cell. 1989 Jan 27;56(2):193–201. doi: 10.1016/0092-8674(89)90892-1. [DOI] [PubMed] [Google Scholar]
  59. Zurawski G., Zurawski S. M. Structure of the Escherichia coli S10 ribosomal protein operon. Nucleic Acids Res. 1985 Jun 25;13(12):4521–4526. doi: 10.1093/nar/13.12.4521. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES