Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Nov;178(21):6209–6215. doi: 10.1128/jb.178.21.6209-6215.1996

The citrate metabolic pathway in Leuconostoc mesenteroides: expression, amino acid synthesis, and alpha-ketocarboxylate transport.

C Marty-Teysset 1, J S Lolkema 1, P Schmitt 1, C Diviès 1, W N Konings 1
PMCID: PMC178491  PMID: 8892820

Abstract

Citrate metabolism in Leuconostoc mesenteroides subspecies mesenteroides is associated with the generation of a proton motive force by a secondary mechanism (C. Marty-Teysset, C. Posthuma, J. S. Lolkema, P. Schmitt, C. Divies, and W. N. Konings, J. Bacteriol. 178:2178-2185, 1996). The pathway consists of four steps: (i) uptake of citrate, (ii) splitting of citrate into acetate and oxaloacetate, (iii) pyruvate formation by decarboxylation of oxaloacetate, and (iv) reduction of pyruvate to lactate. Studies of citrate uptake and metabolism in resting cells of L. mesenteroides grown in the presence or absence of citrate show that the citrate transporter CitP and citrate lyase are constitutively expressed. On the other hand, oxaloacetate decarboxylase is under stringent control of the citrate in the medium and is not expressed in its absence, thereby blocking the pathway at the level of oxaloacetate. Under those conditions, the pathway is completely directed towards the formation of aspartate, which is formed from oxaloacetate by transaminase activity. The data indicate a role for citrate metabolism in amino acid biosynthesis. Internalized radiolabeled aspartate produced from citrate metabolism could be chased from the cells by addition of the amino acid precursors oxaloacetate, pyruvate, alpha-ketoglutarate, and alpha-ketoisocaproate to the cells, indicating a broad specificity of the transamination reaction. The alpha-ketocarboxylates are readily transported across the cytoplasmic membrane. alpha-Ketoglutarate uptake in resting cells of L. mesenteroides was dependent upon the presence of an energy source and was inhibited by inhibition of the proton motive force generating F(0)F(1) ATPase and by selective dissipation of the membrane potential and the transmembrane pH gradient. It is concluded that in L. mesenteroides alpha-ketoglutarate is transported via a secondary transporter that may be a general alpha-ketocarboxylate carrier.

Full Text

The Full Text of this article is available as a PDF (353.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dimroth P., Thomer A. On the mechanism of sodium ion translocation by oxaloacetate decarboxylase of Klebsiella pneumoniae. Biochemistry. 1993 Feb 23;32(7):1734–1739. doi: 10.1021/bi00058a006. [DOI] [PubMed] [Google Scholar]
  2. Garvie E. I. The growth factor and amino acid requirements of species of the genus Leuconostoc, including Leuconostoc paramesenteroides (sp.nov.) and Leuconostoc oenos. J Gen Microbiol. 1967 Sep;48(3):439–447. doi: 10.1099/00221287-48-3-439. [DOI] [PubMed] [Google Scholar]
  3. Giffhorn F., Gottschalk G. Effect of growth conditions on the activation and inactivation of citrate lyase of Rhodopseudomonas gelatinosa. J Bacteriol. 1975 Dec;124(3):1046–1051. doi: 10.1128/jb.124.3.1046-1051.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goldstein B. J., Zahler S. A. Uptake of branched-chain alpha-keto acids in Bacillus subtilis. J Bacteriol. 1976 Jul;127(1):667–670. doi: 10.1128/jb.127.1.667-670.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HARVEY R. J., COLLINS E. B. Role of citritase in acetoin formation by Streptococcus diacetilactis and Leuconostoc citrovorum. J Bacteriol. 1961 Dec;82:954–959. doi: 10.1128/jb.82.6.954-959.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hansen S. A. Thin-layer chromatographic method for the identification of organic acids. J Chromatogr. 1976 Sep 1;124(1):123–126. doi: 10.1016/s0021-9673(00)87851-6. [DOI] [PubMed] [Google Scholar]
  7. Hugenholtz J., Perdon L., Abee T. Growth and Energy Generation by Lactococcus lactis subsp. lactis biovar diacetylactis during Citrate Metabolism. Appl Environ Microbiol. 1993 Dec;59(12):4216–4222. doi: 10.1128/aem.59.12.4216-4222.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kempler G. M., McKay L. L. Improved Medium for Detection of Citrate-Fermenting Streptococcus lactis subsp. diacetylactis. Appl Environ Microbiol. 1980 Apr;39(4):926–927. doi: 10.1128/aem.39.4.926-927.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lolkema J. S., Enequist H., van der Rest M. E. Transport of citrate catalyzed by the sodium-dependent citrate carrier of Klebsiella pneumoniae is obligatorily coupled to the transport of two sodium ions. Eur J Biochem. 1994 Mar 1;220(2):469–475. doi: 10.1111/j.1432-1033.1994.tb18645.x. [DOI] [PubMed] [Google Scholar]
  11. Lolkema J. S., Poolman B., Konings W. N. Role of scalar protons in metabolic energy generation in lactic acid bacteria. J Bioenerg Biomembr. 1995 Aug;27(4):467–473. doi: 10.1007/BF02110009. [DOI] [PubMed] [Google Scholar]
  12. Marty-Teysset C., Lolkema J. S., Schmitt P., Divies C., Konings W. N. Membrane potential-generating transport of citrate and malate catalyzed by CitP of Leuconostoc mesenteroides. J Biol Chem. 1995 Oct 27;270(43):25370–25376. doi: 10.1074/jbc.270.43.25370. [DOI] [PubMed] [Google Scholar]
  13. Marty-Teysset C., Posthuma C., Lolkema J. S., Schmitt P., Divies C., Konings W. N. Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides. J Bacteriol. 1996 Apr;178(8):2178–2185. doi: 10.1128/jb.178.8.2178-2185.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Poolman B. Energy transduction in lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):125–147. doi: 10.1111/j.1574-6976.1993.tb00015.x. [DOI] [PubMed] [Google Scholar]
  15. Poolman B., Molenaar D., Smid E. J., Ubbink T., Abee T., Renault P. P., Konings W. N. Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic energy. J Bacteriol. 1991 Oct;173(19):6030–6037. doi: 10.1128/jb.173.19.6030-6037.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ramos A., Lolkema J. S., Konings W. N., Santos H. Enzyme Basis for pH Regulation of Citrate and Pyruvate Metabolism by Leuconostoc oenos. Appl Environ Microbiol. 1995 Apr;61(4):1303–1310. doi: 10.1128/aem.61.4.1303-1310.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ramos A., Poolman B., Santos H., Lolkema J. S., Konings W. N. Uniport of anionic citrate and proton consumption in citrate metabolism generates a proton motive force in Leuconostoc oenos. J Bacteriol. 1994 Aug;176(16):4899–4905. doi: 10.1128/jb.176.16.4899-4905.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schmellenkamp H., Eggerer H. Mechanism of enzymic acetylation of des-acetyl citrate lyase. Proc Natl Acad Sci U S A. 1974 May;71(5):1987–1991. doi: 10.1073/pnas.71.5.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Seol W., Shatkin A. J. Escherichia coli alpha-ketoglutarate permease is a constitutively expressed proton symporter. J Biol Chem. 1992 Mar 25;267(9):6409–6413. [PubMed] [Google Scholar]
  20. Winters D. A., Poolman B., Hemme D., Konings W. N. Branched-Chain Amino Acid Transport in Cytoplasmic Membranes of Leuconostoc mesenteroides subsp. dextranicum CNRZ 1273. Appl Environ Microbiol. 1991 Nov;57(11):3350–3354. doi: 10.1128/aem.57.11.3350-3354.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES