Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Nov;178(21):6216–6222. doi: 10.1128/jb.178.21.6216-6222.1996

Secondary transporters for citrate and the Mg(2+)-citrate complex in Bacillus subtilis are homologous proteins.

A Boorsma 1, M E van der Rest 1, J S Lolkema 1, W N Konings 1
PMCID: PMC178492  PMID: 8892821

Abstract

Citrate uptake in Bacillus subtilis is mediated by a secondary transporter that transports the complex of citrate and divalent metal ions. The gene coding for the transporter termed CitM was cloned, sequenced, and functionally expressed in Escherichia coli. Translation of the base sequence to the primary sequence revealed a transporter that is not homologous to any known secondary transporter. However, CitM shares 60% sequence identity with the gene product of open reading frame N15CR that is on the genome of B. subtilis and for which no function is known. The hydropathy profiles of the primary sequences of CitM and the unknown gene product are very similar, and secondary structure prediction algorithms predict 12 transmembrane-spanning segments for both proteins. Open reading frame N15CR was cloned and expressed in E. coli and was shown to be a citrate transporter as well. The transporter is termed CitH. A remarkable difference between the two transporters is that citrate uptake by CitM is stimulated by the presence of Mg2+ ions, while citrate uptake by CitH is inhibited by Mg2+. It is concluded that the substrate of CitM is the Mg(2+)-citrate complex and that CitH transports the free citrate anion. Uptake experiments in right-side-out membrane vesicles derived from E. coli cells expressing either CitM or CitH showed that both transporters catalyze electrogenic proton/substrate symport.

Full Text

The Full Text of this article is available as a PDF (369.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergsma J., Konings W. N. The properties of citrate transport in membrane vesicles from Bacillus subtilis. Eur J Biochem. 1983 Jul 15;134(1):151–156. doi: 10.1111/j.1432-1033.1983.tb07545.x. [DOI] [PubMed] [Google Scholar]
  2. Brynhildsen L., Rosswall T. Effects of cadmium, copper, magnesium, and zinc on the decomposition of citrate by a Klebsiella sp. Appl Environ Microbiol. 1989 Jun;55(6):1375–1379. doi: 10.1128/aem.55.6.1375-1379.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. David S., van der Rest M. E., Driessen A. J., Simons G., de Vos W. M. Nucleotide sequence and expression in Escherichia coli of the Lactococcus lactis citrate permease gene. J Bacteriol. 1990 Oct;172(10):5789–5794. doi: 10.1128/jb.172.10.5789-5794.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eisenberg D., Schwarz E., Komaromy M., Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol. 1984 Oct 15;179(1):125–142. doi: 10.1016/0022-2836(84)90309-7. [DOI] [PubMed] [Google Scholar]
  5. Eisenberg D. Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem. 1984;53:595–623. doi: 10.1146/annurev.bi.53.070184.003115. [DOI] [PubMed] [Google Scholar]
  6. Ishiguro N., Izawa H., Shinagawa M., Shimamoto T., Tsuchiya T. Cloning and nucleotide sequence of the gene (citC) encoding a citrate carrier from several Salmonella serovars. J Biol Chem. 1992 May 15;267(14):9559–9564. [PubMed] [Google Scholar]
  7. Joshi-Tope G., Francis A. J. Mechanisms of biodegradation of metal-citrate complexes by Pseudomonas fluorescens. J Bacteriol. 1995 Apr;177(8):1989–1993. doi: 10.1128/jb.177.8.1989-1993.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Loewen P. C. Genetic mapping of katB, a locus that affects catalase 2 levels in Bacillus subtilis. Can J Microbiol. 1989 Aug;35(8):807–810. doi: 10.1139/m89-134. [DOI] [PubMed] [Google Scholar]
  9. Lolkema J. S., Enequist H., van der Rest M. E. Transport of citrate catalyzed by the sodium-dependent citrate carrier of Klebsiella pneumoniae is obligatorily coupled to the transport of two sodium ions. Eur J Biochem. 1994 Mar 1;220(2):469–475. doi: 10.1111/j.1432-1033.1994.tb18645.x. [DOI] [PubMed] [Google Scholar]
  10. Marty-Teysset C., Lolkema J. S., Schmitt P., Divies C., Konings W. N. Membrane potential-generating transport of citrate and malate catalyzed by CitP of Leuconostoc mesenteroides. J Biol Chem. 1995 Oct 27;270(43):25370–25376. doi: 10.1074/jbc.270.43.25370. [DOI] [PubMed] [Google Scholar]
  11. Marty-Teysset C., Posthuma C., Lolkema J. S., Schmitt P., Divies C., Konings W. N. Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides. J Bacteriol. 1996 Apr;178(8):2178–2185. doi: 10.1128/jb.178.8.2178-2185.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Poolman B., Konings W. N. Secondary solute transport in bacteria. Biochim Biophys Acta. 1993 Nov 2;1183(1):5–39. doi: 10.1016/0005-2728(93)90003-x. [DOI] [PubMed] [Google Scholar]
  13. Pos K. M., Dimroth P. Functional properties of the purified Na(+)-dependent citrate carrier of Klebsiella pneumoniae: evidence for asymmetric orientation of the carrier protein in proteoliposomes. Biochemistry. 1996 Jan 23;35(3):1018–1026. doi: 10.1021/bi951609t. [DOI] [PubMed] [Google Scholar]
  14. Ramos A., Poolman B., Santos H., Lolkema J. S., Konings W. N. Uniport of anionic citrate and proton consumption in citrate metabolism generates a proton motive force in Leuconostoc oenos. J Bacteriol. 1994 Aug;176(16):4899–4905. doi: 10.1128/jb.176.16.4899-4905.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wang R. F., Kushner S. R. Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene. 1991 Apr;100:195–199. [PubMed] [Google Scholar]
  16. Willecke K., Gries E. M., Oehr P. Coupled transport of citrate and magnesium in Bacillus subtilis. J Biol Chem. 1973 Feb 10;248(3):807–814. [PubMed] [Google Scholar]
  17. Wolf M., Geczi A., Simon O., Borriss R. Genes encoding xylan and beta-glucan hydrolysing enzymes in Bacillus subtilis: characterization, mapping and construction of strains deficient in lichenase, cellulase and xylanase. Microbiology. 1995 Feb;141(Pt 2):281–290. doi: 10.1099/13500872-141-2-281. [DOI] [PubMed] [Google Scholar]
  18. van der Rest M. E., Schwarz E., Oesterhelt D., Konings W. N. DNA sequence of a citrate carrier of Klebsiella pneumoniae. Eur J Biochem. 1990 Apr 30;189(2):401–407. doi: 10.1111/j.1432-1033.1990.tb15502.x. [DOI] [PubMed] [Google Scholar]
  19. van der Rest M. E., Siewe R. M., Abee T., Schwarz E., Oesterhelt D., Konings W. N. Nucleotide sequence and functional properties of a sodium-dependent citrate transport system from Klebsiella pneumoniae. J Biol Chem. 1992 May 5;267(13):8971–8976. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES