Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Nov;178(21):6223–6226. doi: 10.1128/jb.178.21.6223-6226.1996

Isolation and composition of inositolphosphorylceramide-type sphingolipids of hyphal forms of Candida albicans.

G B Wells 1, R C Dickson 1, R L Lester 1
PMCID: PMC178493  PMID: 8892822

Abstract

Hyphal forms of the human pathogen Candida albicans have been found to contain substantial quantities of phosphosphingolipids. These lipids were fractionated into three classes by normal-phase high-performance liquid chromatography. The first class contained equimolar amounts of phosphorus, inositol, phytosphingosines, and fatty acids; their composition and chromatographic behavior suggest that these compounds are inositolphosphorylceramides. The second class contained equimolar amounts of phosphorus, mannosylinositol, phytosphingosines, and fatty acids; their composition and chromatographic behavior indicate that these compounds are mannosylinositolphosphorylceramides. The third class of compounds contained phosphorus, mannosylinositol, inositol, phytosphingosines, and fatty acids in a molar ratio of 2:1:1:1:1; their composition and chromatographic behavior indicate that these compounds are mannosyldiinositolphosphorylceramides. Molecular species in each class differ in the composition of long chain bases and fatty acids; the most abundant long chain bases were C18 and C20 phytosphingosines, and the most abundant fatty acids were hydroxy and nonhydroxy C24-26. The array of sphingolipids in C. albicans is similar to that of Saccharomyces cerevisiae. Sphingolipids have been shown to be essential in S. cerevisiae, thus these lipids, which are not present in animals, offer a potentially unique target for antifungal chemotherapy against C. albicans.

Full Text

The Full Text of this article is available as a PDF (333.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. Dickson R. C., Wells G. B., Schmidt A., Lester R. L. Isolation of mutant Saccharomyces cerevisiae strains that survive without sphingolipids. Mol Cell Biol. 1990 May;10(5):2176–2181. doi: 10.1128/mcb.10.5.2176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fewster M. E., Burns B. J., Mead J. F. Quantitative densitometric thin-layer chromatography of lipids using copper acetate reagent. J Chromatogr. 1969 Aug 5;43(1):120–126. doi: 10.1016/s0021-9673(00)99173-8. [DOI] [PubMed] [Google Scholar]
  4. Hanson B. A., Lester R. L. The extraction of inositol-containing phospholipids and phosphatidylcholine from Saccharomyces cerevisiae and Neurospora crassa. J Lipid Res. 1980 Mar;21(3):309–315. [PubMed] [Google Scholar]
  5. Lester R. L., Dickson R. C. Sphingolipids with inositolphosphate-containing head groups. Adv Lipid Res. 1993;26:253–274. [PubMed] [Google Scholar]
  6. Lester R. L., Wells G. B., Oxford G., Dickson R. C. Mutant strains of Saccharomyces cerevisiae lacking sphingolipids synthesize novel inositol glycerophospholipids that mimic sphingolipid structures. J Biol Chem. 1993 Jan 15;268(2):845–856. [PubMed] [Google Scholar]
  7. Mandala S. M., Thornton R. A., Frommer B. R., Curotto J. E., Rozdilsky W., Kurtz M. B., Giacobbe R. A., Bills G. F., Cabello M. A., Martín I. The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis. Producing organism, fermentation, isolation, and biological activity. J Antibiot (Tokyo) 1995 May;48(5):349–356. doi: 10.7164/antibiotics.48.349. [DOI] [PubMed] [Google Scholar]
  8. Patton J. L., Lester R. L. The phosphoinositol sphingolipids of Saccharomyces cerevisiae are highly localized in the plasma membrane. J Bacteriol. 1991 May;173(10):3101–3108. doi: 10.1128/jb.173.10.3101-3108.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Patton J. L., Srinivasan B., Dickson R. C., Lester R. L. Phenotypes of sphingolipid-dependent strains of Saccharomyces cerevisiae. J Bacteriol. 1992 Nov;174(22):7180–7184. doi: 10.1128/jb.174.22.7180-7184.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pinto W. J., Srinivasan B., Shepherd S., Schmidt A., Dickson R. C., Lester R. L. Sphingolipid long-chain-base auxotrophs of Saccharomyces cerevisiae: genetics, physiology, and a method for their selection. J Bacteriol. 1992 Apr;174(8):2565–2574. doi: 10.1128/jb.174.8.2565-2574.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Smith S. W., Lester R. L. Inositol phosphorylceramide, a novel substance and the chief member of a major group of yeast sphingolipids containing a single inositol phosphate. J Biol Chem. 1974 Jun 10;249(11):3395–3405. [PubMed] [Google Scholar]
  12. Vincent V. L., Klig L. S. Unusual effect of myo-inositol on phospholipid biosynthesis in Cryptococcus neoformans. Microbiology. 1995 Aug;141(Pt 8):1829–1837. doi: 10.1099/13500872-141-8-1829. [DOI] [PubMed] [Google Scholar]
  13. Wells G. B., Lester R. L. The isolation and characterization of a mutant strain of Saccharomyces cerevisiae that requires a long chain base for growth and for synthesis of phosphosphingolipids. J Biol Chem. 1983 Sep 10;258(17):10200–10203. [PubMed] [Google Scholar]
  14. Zweerink M. M., Edison A. M., Wells G. B., Pinto W., Lester R. L. Characterization of a novel, potent, and specific inhibitor of serine palmitoyltransferase. J Biol Chem. 1992 Dec 15;267(35):25032–25038. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES