Abstract
Murine monoclonal antibodies (MAbs) reacting with Pseudomonas syringae lipopolysaccharide (LPS) O polysaccharides (OPS) composed of tetra- and tri-alpha-D-rhamnose repeats in the backbone [3)D-Rha(alpha1-3)D-Rha(alpha1-2)D-Rha(alpha1-2)D-Rha(alpha1] and [3)D-Rha(alpha1-3)D-Rha(alpha1-2)D-Rha(alpha1] were generated and used for immunochemical analysis and for serological classification of the bacteria. A total of 195 of 358 P. syringae strains tested representing 21 pathovars were shown to share a common epitope, 1a, and were classified into serogroup O1. All strains with pathovars aptata, glycinea, japonica, phaseolicola, and pisi, most of the strains with pathovars atrofaciens and striafaciens, and half of the strains with pathovar syringae were classified into serotypes O1a', O1b, O1c, and O1d within serogroup O1. Serogroup-specific epitope 1a was inferred to be related to the (alpha1-2)D-Rha(alpha1-3) site of the OPS backbone. The serotype-specific epitopes 1b, 1c, 1d, and 1a' were inferred as relating to the immunodominant lateral (alpha1-3)D-Rha, (beta1-4)D-GlcNAc, and (alpha1-4)D-Fuc substituents and backbone-located site (alpha1-3)D-Rha(alpha1-2), respectively, of OPSs that share the common tetra-D-rhamnose repeats in the backbone. A total of 7.3% of the strains studied, all with pathovars morsprunorum and lapsa, were classified as serotypes O2a and O2d within serogroup 02. Serotype-specific epitope 2a was inferred as being related to the backbone-located site D-Rha(alpha1-3)D-Rha and epitope 2d to the immunodominant lateral (alpha1-4)D-Fuc residue of OPS consisting of tri-D-rhamnose repeats in the backbone. Epitope 2d alternated with 2a within the same LPS molecule and did not cross-react with epitope 1d. Serotypes O2a and O2d were observed in some strains correlating with the coexpression of the two chemotypes of OPS by the same strain. The serogroup O1-specific MAb Ps1a reacted weakly but definitely with all strains from serogroup 02. We propose serological formulas for serogroups O1 and 02 as well as for individual strains within these serogroups.
Full Text
The Full Text of this article is available as a PDF (628.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chernyak AYa, Weintraub A., Kochetkov N. K., Lindberg A. A. The beta-configuration of the rhamnosidic linkage in Salmonella serogroups C2 and C3 lipopolysaccharide is important for the immunochemistry of the O-antigen 8. Mol Immunol. 1993 Jul;30(10):887–893. doi: 10.1016/0161-5890(93)90012-z. [DOI] [PubMed] [Google Scholar]
- Das S., Ramm M., Kochanowski H., Basu S. Structural studies of the side chain of outer membrane lipopolysaccharide from Pseudomonas syringae pv. coriandricola W-43. J Bacteriol. 1994 Nov;176(21):6550–6557. doi: 10.1128/jb.176.21.6550-6557.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardan L., Cottin S., Bollet C., Hunault G. Phenotypic heterogeneity of Pseudomonas syringae van Hall. Res Microbiol. 1991 Nov-Dec;142(9):995–1003. doi: 10.1016/0923-2508(91)90010-8. [DOI] [PubMed] [Google Scholar]
- Hitchcock P. J., Brown T. M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol. 1983 Apr;154(1):269–277. doi: 10.1128/jb.154.1.269-277.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kastowsky M., Gutberlet T., Bradaczek H. Molecular modelling of the three-dimensional structure and conformational flexibility of bacterial lipopolysaccharide. J Bacteriol. 1992 Jul;174(14):4798–4806. doi: 10.1128/jb.174.14.4798-4806.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knirel' Iu A., Zdorovenko G. M., Iakovleva L. M., Shashkov A. S., Solianik L. P. Antigennye polisakharidy bakterii. 28. Struktura O-spetsificheskoi tsepi lipopolisakharida Pseudomonas syringae, patovar atrofaciens K-1025, i Pseudomonas holci 90a (serogruppa II). Bioorg Khim. 1988 Feb;14(2):166–171. [PubMed] [Google Scholar]
- Knirel' Iu A., Zdorovenko G. M., Shashkov A. S., Gubanova N. Ia, Iakovleva L. M. Antigennye polisakharidy bakterii. 27. Stroenie O-spetsificheskoi polisakharidnoi tsepi lipopolisakharidov Pseudomonas syringae, patovary atrofaciens 2399, phaesolicola 120a, i Pseudomonas holci 8299, otnosiashchikhsia k serogruppe VI. Bioorg Khim. 1988 Jan;14(1):92–99. [PubMed] [Google Scholar]
- Knirel' Iu A., Zdorovenko G. M., Shashkov A. S., Mamian S. S., Iakovleva L. M. Antigennye polisakharidy bakterii. 26. Stroenie O-spetsificheskikh polisakharidov Pseudomonas cerasi 467 i Pseudomonas syringae, patovar syringae, shtammy 218 i P-55, otnosiashchikhsia k serogruppam II i III. Bioorg Khim. 1988 Jan;14(1):82–91. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lam J. S., Handelsman M. Y., Chivers T. R., MacDonald L. A. Monoclonal antibodies as probes to examine serotype-specific and cross-reactive epitopes of lipopolysaccharides from serotypes O2, O5, and O16 of Pseudomonas aeruginosa. J Bacteriol. 1992 Apr;174(7):2178–2184. doi: 10.1128/jb.174.7.2178-2184.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lüderitz O., Staub A. M., Westphal O. Immunochemistry of O and R antigens of Salmonella and related Enterobacteriaceae. Bacteriol Rev. 1966 Mar;30(1):192–255. doi: 10.1128/br.30.1.192-255.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nghiêm H. O., Himmelspach K., Mayer H. Immunochemical and structural analysis of the O polysaccharides of Salmonella zuerich [1,9,27,(46)]. J Bacteriol. 1992 Mar;174(6):1904–1910. doi: 10.1128/jb.174.6.1904-1910.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nnalue N. A., Weintraub A., Oscarson S., Lindberg A. A. Cross-reactivity between the mannan of Candida species, Klebsiella K24 polysaccharide and Salmonella C1 and E O-antigens is mediated by a terminal non-reducing beta-mannosyl residue. Eur J Biochem. 1994 Mar 15;220(3):973–979. doi: 10.1111/j.1432-1033.1994.tb18701.x. [DOI] [PubMed] [Google Scholar]
- Ojeniyi B., Lam J. S., Høiby N., Rosdahl V. T. A comparison of the efficiency in serotyping of Pseudomonas aeruginosa from cystic fibrosis patients using monoclonal and polyclonal antibodies. APMIS. 1989 Jul;97(7):631–636. doi: 10.1111/j.1699-0463.1989.tb00454.x. [DOI] [PubMed] [Google Scholar]
- Orskov F., Orskov I. Escherichia coli serotyping and disease in man and animals. Can J Microbiol. 1992 Jul;38(7):699–704. [PubMed] [Google Scholar]
- Orskov I., Orskov F., Jann B., Jann K. Serology, chemistry, and genetics of O and K antigens of Escherichia coli. Bacteriol Rev. 1977 Sep;41(3):667–710. doi: 10.1128/br.41.3.667-710.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ovod V., Lagerstedt A., Ranki A., Gombert F. O., Spohn R., Tähtinen M., Jung G., Krohn K. J. Immunological variation and immunohistochemical localization of HIV-1 Nef demonstrated with monoclonal antibodies. AIDS. 1992 Jan;6(1):25–34. doi: 10.1097/00002030-199201000-00003. [DOI] [PubMed] [Google Scholar]
- Pastushenko L. T., Simonovich I. D. Serologicheskie gruppy fitopatogennykh bakterii roda Pseudomonas. II. Antigennoe rodstvo razlichnykh vidov. Mikrobiol Zh. 1979 Jul-Aug;41(4):330–339. [PubMed] [Google Scholar]
- Pavliak V., Nashed E. M., Pozsgay V., Kovác P., Karpas A., Chu C., Schneerson R., Robbins J. B., Glaudemans C. P. Binding of the O-antigen of Shigella dysenteriae type 1 and 26 related synthetic fragments to a monoclonal IgM antibody. J Biol Chem. 1993 Dec 5;268(34):25797–25802. [PubMed] [Google Scholar]
- Rivera M., Bryan L. E., Hancock R. E., McGroarty E. J. Heterogeneity of lipopolysaccharides from Pseudomonas aeruginosa: analysis of lipopolysaccharide chain length. J Bacteriol. 1988 Feb;170(2):512–521. doi: 10.1128/jb.170.2.512-521.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith A. R., Zamze S. E., Munro S. M., Carter K. J., Hignett R. C. Structure of the sidechain of lipopolysaccharide from Pseudomonas syringae pv. morsprunorum C28. Eur J Biochem. 1985 May 15;149(1):73–78. doi: 10.1111/j.1432-1033.1985.tb08895.x. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vale T. A., Gaston M. A., Pitt T. L. Subdivision of O serotypes of Pseudomonas aeruginosa with monoclonal antibodies. J Clin Microbiol. 1988 Sep;26(9):1779–1782. doi: 10.1128/jcm.26.9.1779-1782.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verheul A. F., Boons G. J., Van der Marel G. A., Van Boom J. H., Jennings H. J., Snippe H., Verhoef J., Hoogerhout P., Poolman J. T. Minimal oligosaccharide structures required for induction of immune responses against meningococcal immunotype L1, L2, and L3,7,9 lipopolysaccharides determined by using synthetic oligosaccharide-protein conjugates. Infect Immun. 1991 Oct;59(10):3566–3573. doi: 10.1128/iai.59.10.3566-3573.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodward M. P., Young W. W., Jr, Bloodgood R. A. Detection of monoclonal antibodies specific for carbohydrate epitopes using periodate oxidation. J Immunol Methods. 1985 Apr 8;78(1):143–153. doi: 10.1016/0022-1759(85)90337-0. [DOI] [PubMed] [Google Scholar]