Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 2007 Jan 9;80(2):205–220. doi: 10.1086/511441

The Role of Neuronal Complexes in Human X-Linked Brain Diseases

Frédéric  Laumonnier 1, Peter C  Cuthbert 1, Seth G N  Grant 1
PMCID: PMC1785339  PMID: 17236127

Abstract

Beyond finding individual genes that are involved in medical disorders, an important challenge is the integration of sets of disease genes with the complexities of basic biological processes. We examine this issue by focusing on neuronal multiprotein complexes and their components encoded on the human X chromosome. Multiprotein signaling complexes in the postsynaptic terminal of central nervous system synapses are essential for the induction of neuronal plasticity and cognitive processes in animals. The prototype complex is the N-methyl-d-aspartate receptor complex/membrane-associated guanylate kinase–associated signaling complex (NRC/MASC) comprising 185 proteins and embedded within the postsynaptic density (PSD), which is a set of complexes totaling ∼1,100 proteins. It is striking that 86% (6 of 7) of X-linked NRC/MASC genes and 49% (19 of 39) of X-chromosomal PSD genes are already known to be involved in human psychiatric disorders. Moreover, of the 69 known proteins mutated in X-linked mental retardation, 19 (28%) encode postsynaptic proteins. The high incidence of involvement in cognitive disorders is also found in mouse mutants and indicates that the complexes are functioning as integrated entities or molecular machines and that disruption of different components impairs their overall role in cognitive processes. We also noticed that NRC/MASC genes appear to be more strongly associated with mental retardation and autism spectrum disorders. We propose that systematic studies of PSD and NRC/MASC genes in mice and humans will give a high yield of novel genes important for human disease and new mechanistic insights into higher cognitive functions.


The synapse is fundamentally important for neural function because it mediates the interneuron communication that forms the basis of all cognitive activity.14 The majority of synapses in the CNS use glutamate as a neurotransmitter.5,6 Glutamate is released from presynaptic terminals in response to incoming action potentials, diffuses across the synaptic cleft, and activates receptors embedded in the postsynaptic membrane.7,8 The main types of glutamate receptors are ion-channel–forming N-methyl-d-aspartic acid (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and G protein–coupled metabotropic (mGluR) receptors (fig. 1A). The primary role of AMPA receptors is to mediate the membrane depolarization that is necessary to initiate action potentials in the postsynaptic neuron. By contrast, the NMDA and mGluR receptors do not significantly contribute to the depolarization but do initiate signal transduction–pathway signaling. Moreover, NMDA and mGluR receptors are physically linked by scaffolding proteins and are found within multiprotein complexes, along with signaling enzymes and other proteins.1013

Figure  1. .

Figure  1. 

The PSP of a glutamatergic excitatory synapse. A, The PSP, the complement of postsynaptic proteins that contains ∼1,180 proteins. This set of proteins is organized into complexes of varying sizes (B). The function of postsynaptic complexes is to receive and process signals that mediate neuronal communication and synaptic and behavioral plasticity. NMDA, AMPA, and mGLuR subtypes of glutamate receptors are indicated. B, Venn diagram of constituent protein complexes of the PSP (adapted from Grant9). The total set of PSP (1,180 proteins) is represented as sets of complexes (NRC/MASC, mGLuR5, AMPA, and PSD), and the number of proteins in these sets and overlaps are indicated. Details of the specific proteins are found in table A1.

Pharmacological antagonists for the glutamate receptors have been available for >20 years and have been used extensively in animal and human studies, and it is clear that these receptors play a role in a diverse set of behaviors.14,15 These findings have led to the “glutamate hypothesis” of mental illnesses.16,17 Although there is no doubt that glutamate receptors are physiologically important, progress in several areas has dramatically expanded our understanding of their role in synapse biology. First, it is known that the receptors physically link to a plethora of proteins and form signaling and trafficking complexes (discussed in detail below); second, synapse proteomics has characterized multiprotein complexes and has discovered hundreds of postsynaptic proteins, many of which are involved with human disease; and, third, genetic manipulation of synapse proteins in mouse has overcome the limited availability of pharmacological antagonists and, hence, has allowed the functional testing of specific genes in behaviors. Given the large amount of available data within these different areas of investigation, it is timely to integrate these data sets and to ask how they might be useful in future human genetic studies of brain diseases.

We will address a number of general issues relevant to any tissue or disease, using the extensive information on synapse proteins and specific multiprotein complexes. Interrogating these lists and models with human genetic data allows several questions to be addressed. First, how many of the genes encoding the components of a complex are involved with human disease? Second, are there similarities in the phenotypes that might indicate that the mutations have interfered with the overall function of the complex? Third, what do the human phenotypes reveal about the physiological or cellular functions of the complex? Fourth, can we confidently use the gene lists to hunt for further disease-causing mutations? Fifth, can understanding the interaction of proteins in the complexes provide useful models for understanding genetic interactions, such as epistasis, or polygenic disorders? We will address these issues, using data on neurological phenotypes in humans with X-linked disorders and data from studies of proteins found on the postsynaptic side of mammalian brain synapses. This focus provides a more in-depth view from which we can learn lessons used to guide studies on all autosomes as well as larger sets of brain genes.

The Synapse and the Postsynaptic Proteome

By analogy with genome projects that aim to provide comprehensive lists of genes, synapse proteomics aims to produce comprehensive lists of proteins that are found in synapses. The postsynaptic proteome (PSP) is the complement of proteins localized within the postsynaptic terminal, and recent large-scale efforts to characterize the PSP have produced a comprehensive description of its constituents.1823 These studies were performed by the biochemical fractionation of the synapse and by subsequent protein identification with the use of mass spectrometry and antibody-based methods. Meta-analysis of these data sets indicates that the PSP contains ∼1,180 proteins in a number of distinct structural and functional complexes (fig. 1B and table A1). The largest of these complexes is the postsynaptic density (PSD), a dense structure directly below the postsynaptic membrane that is visible by electron microscopy24,25 and that comprises ∼1,124 proteins (table A1 and the Genes to Cognition [G2C] Web site). It is worth noting that these lists are not definitive, since some proteins escape detection and some proteins will be contaminants from the fractionation procedure.

The PSD contains many different classes of proteins representing a broad range of cell biological functions, including membrane-bound receptors (including the glutamate receptors), adhesion proteins and channels, signaling proteins and adaptors, and proteins involved in transport, RNA metabolism, and transcription and translation (table A1).1823 Compared with the entire mouse proteome, PSD proteins are enriched in protein interaction domains and, in particular, in PDZ (PSD-95, Discs-large, ZO-1) and SH3 (Src homology 3) domains, consistent with the abundance of adaptor and scaffolding proteins. There is also enrichment of kinase, calcium-dependent signaling, and Ras guanosine triphosphatase (GTPase) domains.20

The glutamate receptor complexes are subsets of the PSP, and there is considerable overlap between the various complexes (fig. 1B). Affinity purification of NMDA receptor complexes (NRC) or affinity isolation of membrane-associated guanylate kinase (MAGUK) proteins, which directly bind NMDA receptors, resulted in 185 proteins.10,20 These complexes are alternatively known as the “NRC” or the “MASC” (MAGUK-associated signaling complexes), since both isolation procedures result in a similar set of proteins. Within the NRC/MASC can be found the NMDA and mGluR subunits, whereas AMPA-receptor subunits are in separate and smaller complexes (nine proteins).20 Through affinity isolation, mGluR5 receptor complexes were found to contain 76 proteins.26 The initial observations that NMDA and mGluR receptors were associated with dozens of proteins were surprising; however, since then, a substantial number of binary protein-interaction studies have mapped the interactions in detail. Moreover, many of the proteins in the NRC/MASC are known to mediate the signaling functions of the receptors.27,28 As suggested by the Venn diagram in figure 1B, the PSP is a set of complexes embedded within the PSD and has often been referred to as a “supramolecular” complex.29

The NRC/MASC is the most well studied of these large postsynaptic complexes and can be considered a prototype for the overall PSP. The physiological role of NRC/MASC proteins has been investigated using knockout mice and pharmacological intervention, most typically with the use of brain slices in which synaptic plasticity has been induced. More than 40 NRC proteins are necessary for the process of converting patterns of neuronal activity into long-lasting changes in neuronal function, and a similar number are required for behavioral forms of plasticity in rodents, such as learning or fear conditioning.27,28,30 These numbers continue to increase as further genes are tested, which reinforces the model that the NRC/MASC is a signaling complex involved with the basic process of neural plasticity.

In addition to the accumulation of mouse genetic and phenotypic data on NRC/MASC proteins, the binary interactions of proteins within the complexes have been mapped and used to generate protein-interaction networks.27,28 The average number of protein interactions separating any pair of NRC/MASC proteins is very low (average shortest path length 3.3), suggesting that the complex consists of a large network containing multiple clusters of well-connected proteins rather than a system of linear pathways with occasional interconnections. Algorithm-based network cluster analysis indicates that the complex contains 13 clusters, each with distinct functional characteristics and phenotypic associations (fig. 2). The flow of information through the complex is modeled in figure 3. In essence, the glutamate receptors and their proximal associated proteins form “input” modules, which then connect to a large set of general signaling proteins referred to as “processing” modules, which then signal to “output” modules comprising some well-known effector-pathway components, such as the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway (see the work of Pocklington et al.27 and Pocklington et al.28 for details of the networks). The mouse and human mutations that result in plasticity or behavioral deficits were mapped onto this network, and some interesting distributions of phenotypes were seen in particular modules. Although it is clear that this type of systems-biology approach will benefit from systematic mutational studies like those done in yeast,31,32 it demonstrates that molecular network maps of synaptic protein complexes can be used to help understand the functional relationships between proteins. At the very least, it provides a logic for assembling a disparate set of genetic studies into a unified model.

Figure  2. .

Figure  2. 

Protein-interaction network of the NRC/MASC complex. A network of binary interactions between NRC/MASC proteins was clustered into “modules” with the use of algorithms.28 These 13 numbered clusters are grouped into three layers: “input,” representing the neurotransmitter receptors and proximal interacting proteins; “processing,” general signaling proteins; and “output,” downstream sets of signaling proteins such as ERK/MAPK pathways. Reprinted with permission from Molecular Systems Biology.

Figure  3. .

Figure  3. 

Modular signaling mechanisms of postsynaptic complexes. The modules of clustered proteins are organized into layers of signaling, with synaptic cleft at the top. Presynaptic information, in the form of a neurotransmitter, enters the postsynaptic signaling machinery via activation of ionotropic and metabotropic transmembrane receptors that are in modules of proximal signaling proteins (blue). From there, signals are passed to a large information-processing module (red) and then are distributed to effector mechanism networks (green), which mediate a functional outcome (dark blue arrow).28 This signaling machinery provides a high degree of signal integration by protein interaction and orchestration of output responses.

These proteomic and mouse genetic studies serve as a driver for human genetic studies, since it would seem likely that many of the proteins would be involved in human disease. Indeed, when the NRC was first characterized, it was recognized that three proteins were well known to be mutated in neurological diseases.10 A recent data-mining and literature-curation study revealed that 54 NRC/MASC proteins are involved with both psychiatric and neurological conditions.27,30 A considerable number of these disorders have cognitive components (e.g., autism, schizophrenia, and mental retardation [MR]) consistent with mouse genetic studies showing specific impairments in cognitive function.27,30

The X Chromosome as a Model for the Genetics of Cognition

In recent decades, the role of the X chromosome in cognition has been extensively studied. Although it is known that genes influencing cognitive function are distributed throughout the human genome, many more “cognition genes” have been found on the X chromosome than on comparable segments of the autosomes.33 In parallel with these observations, numerous epidemiological studies performed to evaluate the sex ratio in autism and MR have indicated an excess of males, suggesting a preferential association between genetic defects and cognitive disorders in males.3438 Males outnumber females in nearly all surveys of MR, with an excess of ∼20%, and numerous families have been reported in which MR segregated in an X-linked inheritance pattern. X-linked MR (XLMR) is a common cause of moderate to severe intellectual disability in males, with a prevalence of 2.6 cases per 1,000 in the general population, accounting for >10% of all cases of MR.39,40 Although highly heterogeneous, XLMR is usually divided into syndromic forms (MRXS), which have associated musculoskeletal or metabolic symptoms, and nonsyndromic (or nonspecific) forms (MRX) in which MR is the sole feature, although accumulating evidence suggests that this boundary is less evident than was previously expected.35,41 So far, >140 MRXS conditions have been reported; in almost half of these, causative mutations in genes have been described.4042

The publication of the genomic sequence of the human X chromosome provided a comprehensive data set of the genes and their organization.43,44 Approximately 1,100 genes have been annotated on the X chromosome, of which at least 800 are protein coding.43,45,46 The features of the gene organization on the X chromosome are low gene number and density and enrichment for genes expressed in testis, brain, skeletal muscle, ovary, and placenta.43,47 Although it accounts for only 4% of all identified human genes, this chromosome includes genes responsible for almost 10% of diseases with known Mendelian inheritance.43 The mammalian X chromosome is very different from the autosomes because of its unequal representation in males (1 copy) and females (2 copies). To compensate for this unequal dose, females inactivate one copy of the X chromosome in every cell. Thus, this chromosome is of particular interest for medical genetics, since numerous disease conditions have been associated with the X chromosome because the phenotypic consequences of a recessive mutation are revealed directly in males.41,44,48

In the last Ensembl data release (National Center for Biotechnology Information database release 39) and with the use of the large-scale data-mining tool BioMart (MartView software), we found that >500 genes located on the X chromosome are expressed in the human brain, thus representing numerous potential candidates for X-linked brain diseases. Many classes of proteins are represented, ranging from transcription factors, channels and receptors, and DNA/RNA–binding proteins to scaffolders, enzymes, and signal-transduction proteins. These large data sets, rich in human genetic data, as well as representing many brain genes of different functions, provide an ideal tool for systematically analyzing the postsynaptic proteins and their signaling complexes.

X-Linked Diseases and Postsynaptic Complexes

To address the role of the NRC/MASC and the PSD in X-linked brain diseases, we annotated the X-chromosome genes encoding components of these complexes. Table 1 summarizes the total numbers and functional classification of PSD and NRC/MASC genes, those on the X chromosome, and those that are mutated in XLMR. The X chromosome was not enriched for NRC/MASC or PSD genes, since 3.7% (39 of 1,124) of NRC/MASC and 3.2% (6 of 186) of PSD genes were encoded on X, which is similar to the 4% of all coding genes found on this chromosome. A high proportion of the X-linked genes coding PSD and NRC/MASC proteins were found to be mutated in psychiatric disorders: 19 (49%) of 39 PSD genes and 6 (85%) of 7 NRC/MASC genes. These proportions are likely to increase, since some of these genes that have no associated human disorder are known to result in abnormal phenotypes in knockout mice (table 2). A specific list of these genes is provided in table 3, since they are suitable targets for future resequencing efforts.

Table 1. .

Functional Classification of Synapse Proteome Proteins and Their Representation on the X Chromosome

No. of Proteins inb
PSD
NRC/MASC
Functional Classificationa Total X-Linked Mutated Total X-Linked Mutated
Channels and receptors 80 4 2 12 0 0
MAGUKs/adaptors/scaffolders 54 4 1 20 1 1
Ser/thr kinases 46 2 2 21 1 1
Tyr kinases 3 0 0 2 0 0
Protein phosphatases 18 0 0 7 0 0
G proteins and modulators 77 3 2 19 0 0
Signaling molecules and enzymes 278 10 3 40 0 0
Transcription and translation 119 5 2 5 0 0
Cytoskeletal and cell-adhesion molecules 153 6 6 35 4 4
Synaptic vesicles and protein transport 159 3 1 22 1 0
Novel 107 2 0 3 0 0
Other 30 0 0 0 0 0
Summary 1,124 39 19 186 7 6
a

Proteins found in PSD and NRC/MASC profiling experiments were classified into functional groups (see the work of Collins et al.11).

b

The total number of proteins in the complex (Total), the number on the X chromosome (X-linked), and the number known to be mutated in XLMR (Mutated) are indicated for each protein class. Note that almost 50% (19 of 39) of the X-linked genes coding for PSD proteins and 85% (6 of 7) of MASC genes are mutated in nervous-system diseases.

Table 2. .

Proteins of the PSP Encoded by X-Chromosomal Genes

Protein Classa and Gene Function Psychiatric Disorder(s) MIM Number Knockout Modelb
Channels and receptors:
GRIA3 Glutamate receptor MRXS, autism, bipolar disorder 305915 Yes
PGRMC1 Progesterone receptor 300435
ATP2B3 Ca2+ ATPase 300014
IL1RAPL1 IL1 receptor accessory proteinlike MRX 300206
MAGUKs/adaptors/scaffolders:
CASK Calcium/calmodulin–dependent serine protein kinase 300172 Lethal
CNKSR2 Connector enhancer of kinase suppressor of Ras 2
DLG3 Synapse-associated protein 102 MRX 300189 Yes
SH3KBP1 SH3-domain kinase-binding protein (regulator of receptor endocytosis and lysosomal degradation) 300374
Ser/thr kinases:
CDKL5 Ser/thr–protein kinase MRXS, autism, infantile spasms 300203
RPS6KA3 Ribosomal protein S6 kinase MRXS, MRX 300075 Yes
G proteins:
SEPT6 GTP-binding protein, cytokinesis Yes
G modulators:
ARHGEF9 Cdc42 guanine nucleotide exchange factor MRX, epilepsy 300429
GDI1 Rab GDP dissociation inhibitor MRX 300104 Yes
Signaling molecules and enzymes:
 Protease/protease inhibitor:
  PSMD10 Regulatory subunit of the 26S proteasome 603480
 Other enzymes:
  DDX3X RNA helicase (transcription, splicing, translation)
  HADH2 Hydroxyacyl-CoA dehydrogenase MRXS, choreoathetosis 300256
  MAOA MAOA MRXS, aggressive behavior 309850 Yes
  OGT O-linked N-acetylglucosamine transferase 300255 Yes
  PRPS1 Phosphoribosyl pyrophosphate synthetase MRXS, gout 311850 Yes
  RP2 Involved in beta-tubulin folding 312600
 Mitochondrial enzymes:
  IDH3G Isocitrate dehydrogenase 3 (NAD+) gamma 300089
  PDCD8 Oxidoreductase, apoptosis-inducing factor 300169 Yes
  PDHA1 Pyruvate dehydrogenase (lipoamide) alpha 1 300502 Yes
Transcription and translation:
 Transcription elements:
  ATRX Transcriptional regulator MRXS, NS-MR, microcephaly, hypotonic facies 300032 Yes
 Other nuclear/DNA binding:
  HNRPH2 Component of the heterogenous nuclear ribonucleoprotein (hnRNP) complexes 601036
  SMARCA1 Transcriptional activator 300012
 Ribosomal:
  RPL10 60S ribosomal protein L10 MR, autism 312173
  RPS4X 40S ribosomal protein S4 312760
Cytoskeletal and cell adhesion:
 Myelin
  PLP1 Component of myelin MRXS, spastic paraplegia, Pelizaeus-Merzbacher disease 300401 Yes
 Other cytoskeletal:
  DMD Dystrophin; bridges the inner cytoskeleton (F-actin) and the extracellular matrix MRXS, muscular dystrophy 300377 Yes
  FLNA Actin-binding protein MRXS, epilepsy, brain anomalies 300017
 Other cell-adhesion molecules:
  L1CAM L1 cell–adhesion molecule, axonal glycoprotein MRXS, MASA syndrome, hydrocephalus 308840 Yes
  NLGN3 Neuronal cell–surface protein Autism 300336
  NLGN4 Neuronal cell–surface protein MRX, autism 300427
Synaptic vesicles/protein transport:
 Synaptic vesicle:
  SYN1 Synaptic vesicle–associated protein MRXS, epilepsy, macrocephaly, aggressive behavior 313440 Yes
  SYP Integral protein of small presynaptic vesicles 313475 Yes
 Transporters:
  SLC25A5 Mitochondrial carrier; adenine nucleotide translocator 300150
Uncharacterized/novel:
MGC4825 Unknown
IQSEC2 Unknown 300522
a

Proteins have been classified according to their function and involvement in X-linked psychiatric disorders.

b

Knockout mouse models are indicated, and further details are obtainable from the Mouse Genome Informatics database version 3.5.

Table 3. .

X-Linked Genes of the PSP That Are Not Currently Known to Have Mutations in Human Cognitive Disorders[Note]

Gene Locus KIAA or MGC
Full-Length Clone
Cellular Function
PGRMC1 Xq24 MGC8891 Transmembrane receptor
ATP2B3 Xq28 NA Transmembrane receptor
CASK Xp11.4 MGC150920 Scaffolder
CNKSR2 Xp22.12 KIAA0902 Scaffolder
SH3KBP1 Xp22.12 MGC9446 Scaffolder
SEPT6 Xq24 KIAA0128 GTP-binding protein potentially involved in cytokinesis
PSMD10 Xq22.3 MGC9114 Involved in the ATP-dependent degradation of ubiquitinated proteins
DDX3X Xp11.4 MGC20129 Regulation of transcription, splicing and translation
OGT Xq13.1 MGC22921, MGC39117 Protein amino acid O-linked glycosylation
RP2 Xp11.3 KIAA0215 Involved in beta-tubulin folding
IDH3G Xq28 MGC5393, MGC2102 Involved in citric acid cycle in mitochondrion
PDCD8 Xq25 MGC111425 Mitochondrial apoptosis–inducing factor
PDHA1 Xp22.12 MGC8609 Glycolysis, gluconeogenesis, acetyCoA metabolism
HNRPH2 Xq22.1 Heterogenous nuclear ribonucleoprotein complex (pre-mRNA maturation)
SMARCA1 Xq25 MGC151056 Chromatin remodeling, regulation of transcription
RPS4X Xq13.1 MGC8636, MGC87857 Translation
SYP Xp11.23 MGC70359 Presynaptic vesicle
SLC25A5 Xq24 MGC65136 Ion transporter
MGC4825 Xp22.11 MGC4825 Unknown
IQSEC2 Xp11.22 KIAA0522 Unknown

Note.— These genes represent priority targets for future testing and resequencing in X-linked cognitive disorders. Note that CASK and CNKSR2 also belong to the MASC complex. This list provides the reference of cloned full-length coding cDNA sequences of most of the genes. NA = not available.

Multiple functional groups of proteins were represented, with the most abundant being signaling molecules and enzymes representing 10 proteins, which were >25% of the total X-linked PSD proteins. Of the 10 specific functional categories of PSD proteins, 8 were encoded on the X chromosome, and there are human mutations in all 8 categories (table 1). We noted that all (6 of 6) cytoskeletal and adhesion proteins (PLP1 [MIM 300401], DMD [MIM 300377], FLNA [MIM 300017], L1CAM [MIM 308840], NLGN3 [MIM 300336], and NLGN4 [MIM 300427]) and all (2 of 2) serine/threonine kinases (CDKL5 [MIM 300203] and RPS6KA3 [MIM 300075]) were mutated in brain diseases (tables 1 and 2).

The multiple classes of proteins involved in XLMR and the heterogeneity of proteins in the PSP allow a unification of the two data sets. In other words, if one were to consider the genetic data alone, then the heterogeneity would be accounted for in terms of a diverse range of mechanisms contributing to XLMR. However, the fact that many components from this heterogeneous list are found within the NRC/MASC or the PSD indicates that the mutations may have a single general mechanism at the level of their function in the multiprotein complex. In other words, the overall function of the complex can be impaired by mutation in different proteins in the complex. This does not mean that the mutations should have identical functions, since the specific role of the proteins in the complexes will differ, although they have a common overall function. This model is strongly supported by mouse genetic data and synaptic physiology for core components of NRC/MASC, where mutations in different classes of proteins result in changes in synaptic plasticity.4951

Functions of Specific X-Linked NRC/MASC and PSD Genes

We will now address the details of specific genes and their phenotypes in humans and mice. Table 2 provides further details of the 39 PSD X-linked genes, including their functions, human disorders, and mouse models. With a focus on the seven X-linked NRC/MASC genes (DLG3, RPS6KA3, PLP1 [MIM 300401], L1CAM, SLC25A5 [MIM 300150], NLGN3, and NLGN4), six are associated with brain diseases. Only the SLC25A5 gene, which encodes a mitochondrial adenosine diphosphate or triphosphate (ADP/ATP) translocase, has not been involved in XLMR, and it is possible that this translocase is a contaminant of the proteomic experiment. These proteins and other NRC/MASC proteins are schematically represented in figure 4, which also illustrates the genes implicated in human and mouse diseases.

Figure  4. .

Figure  4. 

Human and mouse mutations and the cognitive disorders affecting specific NRC/MASC signaling pathways and other postsynaptic proteins. The NMDA receptor subunits (NR1 and NR2) are linked to MAGUK proteins (SAP102 and PSD-95) that bind SynGAP, which regulates the Ras-ERK-RSK pathway. This pathway regulates transcription (e.g., CREB), cell adhesion (via L1CAM), and AMPA receptors. MAGUKs, including DLG3/SAP102, coordinate the postsynaptic signaling response to NMDA receptor (NR1 and NR2) activation. The MAP kinase pathway is an important limb of this response, leading to changes in transcription factors such as RSK2, which, in turn, send feedback to modify AMPA receptor function and thus produce synaptic plasticity. Note that FMRP, encoded by the FMR1 gene, does not belong to this complex but is involved in the regulation of PSD-95 translation via mGluR activation.52 Note that the NRC/MASC–associated signaling pathway is involved in MRX as well as MRXS. The molecules are shaded in yellow if there is a known mouse mutation that results in cognitive dysfunction, and red letters indicate if mutation is in a human gene.

The DLG3 (discs large, Drosophila, homolog of, 3) gene encodes the synapse-associated protein 102 (SAP102), a member of the MAGUK protein family.53,54 SAP102 and other MAGUK proteins (e.g., PSD-95 and PSD-93/chapsyn-110) are multidomain scaffold proteins that bind the NMDA receptor and other signaling and cytoskeletal proteins.1,7 Human mutations in DLG3 are associated with MR,55 and mouse knockouts result in learning deficits and alterations in the MAPK signaling pathway.56

Mutations in NLGN3 and NLGN4 (neuroligin 3 and 4) were found in XLMR and/or autism.57,58 A wide spectrum of phenotypes, ranging from mild MR without communication deficits to Asperger syndrome with normal or supranormal intelligence, were reported.58 Functional analyses performed in hippocampal neuronal cultures where Nlgn 1, 2, and 3 were knocked down showed altered dendritic spines and a reduction in dendritic branching and arborization.59 Others studies suggest that neuroligins affect, in combination with PSD-95, the direction of development into an inhibitory or excitatory synapse in vitro.6062 Interestingly, the recent publication63 of the triple-knockout mouse for Nlgn 13 showed that the animals die shortly after birth because of respiratory failure. However, Varoqueaux et al. noticed that the density of synaptic contacts is not altered in neuroligin-deficient brains, indicating that neuroligins are required for proper synapse maturation and brain function but not for the initial formation of synaptic contacts.63

The L1CAM gene encodes the L1 protein, which is a highly conserved member of the immunoglobulin-like family of cell-adhesion glycoprotein molecules. During development, L1 is expressed in neurons throughout the brain and is involved in neurite outgrowth, axonal guidance, synaptogenesis, myelination, and fasciculation.6466 Mutations in L1 affect development of the nervous system in human and mouse: they are responsible for a form of MRXS described as “X-linked hydrocephalus,” “MASA syndrome” (MR, aphasia, shuffling gait, and adductus thumbs), or “spastic paraplegia type I” (SPG1).64 L1 disruption in mice also produces a cognitive defect, and abnormalities of the hippocampus and the morphology of individual neurons were reported.67 A recent study showed that the MAPK pathway (involving mitogen-activated protein kinase kinase [MEK] and ERK) regulates L1CAM-mediated nerve growth by phosphorylating L1CAM and then modulating its interaction with ankyrin B (see fig. 4).68

The RPS6KA3 gene encoding the 90-kDa ribosomal S6 serine-threonine kinase-2 (RSK2) is mutated in both MRXS (e.g., Coffin-Lowry syndrome)69 and MRX.70 In the CNS, the ERK signaling pathway activates RSK2 and leads to protein kinase A (PKA)–dependent activation of cyclic adenosine monophosphate response element–binding (CREB) protein in the hippocampus and to the regulation of neuronal synaptic plasticity (fig. 4).71 Interestingly, a study performed by Naisbitt et al. suggested that RSK2 directly binds by a C-terminal motif and/or phosphorylates Shank1 (SH3 and multiple ankyrin-repeat domains 1 [MIM 604999]), Shank3 (MIM 606230), Magi-1 (MAGUK, WW and PDZ domain–containing 1 [MIM 602625]) and Grip1 (glutamate receptor–interacting protein 1 [MIM 604597]), which are then tethered to the NRC/MASC by Shank interactors, such as guanylate kinase–associated proteins (GKAP) or Homer, which belong to the PSP.72 They also demonstrated that signaling via RSK2 seems to regulate AMPA-receptor transmission (such as the X-linked GRIA3 protein).73

The proteolipid protein 1 (PLP1) is the major integral membrane protein of adult CNS myelin.74 PLP1 is synthesized at the endoplasmic reticulum (ER) and then is transported to the cell surface, where it is incorporated into the myelin membrane. The primary role of PLP1 in myelin formation is currently thought to be the adhesion and stabilization of the extracellular surfaces of the myelin membrane, although some evidence suggests that PLP1 may function as a channel-forming protein.75 Mutations in the PLP1 gene are associated with forms of MRXS, including Pelizaeus-Merzbacher disease and X-linked SPG1. Mutant forms of PLP1 are retained in the ER, and the resulting accumulation of mutant protein is thought to be a direct cause of oligodendrocyte cell death.76 The PLP1 protein has been found in different PSD purification studies, thus suggesting a postsynaptic subcellular localization in the neuronal cell.1921,23 Recently, Gudz et al. found that, after agonist activation of the AMPA receptor, the PLP1, αvβ3 integrin, and the AMPA receptor proteins form a complex.77 These data are particularly interesting, since this protein is not typically considered to be postsynaptic. Another link between PLP1 and NRC/MASC may be provided by the recent observation that oligodendrocytes express NMDA receptors, which are important for aspects of ischemia.78,79

Turning our attention from the NRC/MASC, which can be considered a signaling complex embedded within a much larger set of proteins forming the PSD, we address the functions of specific PSD genes involved in human X-linked disorders. The channel and receptors group includes the GRIA3 (glutamate receptor, ionotropic, AMPA 3 [MIM 305915]) and IL1RAPL1 (interleukin 1 receptor accessory protein-like 1 [MIM 300206]) genes. The GRIA3 gene encodes the AMPA receptor GLUR3, which mediates fast synaptic transmission in the CNS.80 This gene has been previously described in a female with MR and bipolar affective disorder and a balanced X-autosome translocation truncating the GRIA3 gene.81 Very recently, three missense mutations at evolutionarily conserved positions of the GRIA3 gene have been characterized in three unrelated males with MR.82 Analyses of knockout mice for Gria3 revealed an enhanced long-term potentiation of synaptic transmission, which indicates a role of GRIA3 in the regulation of synaptic plasticity.80

The IL1RAPL1 gene, mutated in several families with MRX,83 codes for a receptor protein that interacts with the neuronal calcium sensor-1 protein (a member of a large Ca2+-binding protein family) through its cytoplasmic C-terminal domain.84 IL1RAPL may be involved in the regulation of calcium-dependent exocytosis and, therefore, in synaptic activity.84

The HADH2 (hydroxyacyl-CoA dehydrogenase, type II [MIM 300256]), MAOA (monoamine oxidase A [MIM 309850]), and PRPS1 (phosphoribosylpyrophosphate synthetase I [MIM 311850]) genes encode signaling enzymes with a role in the degradation of branched-chain fatty acids and isoleucine, serotonin metabolism, and purine synthesis, respectively. They are involved in variable forms of MRXS.

Two G protein–modulator genes, GDI1 (guanosine diphosphate dissociation inhibitor 1 [MIM 300104]) and ARHGEF9 (Rho guanine nucleotide exchange factor 9 [MIM 300429]), appear to be mutated in MRX.

Very recently, Klauck et al. identified mutations in the RPL10 gene (ribosomal protein L10 [MIM 312173]) in individuals with autism and MR.85 RPL10 belongs to the L10e family of ribosomal proteins and is a component of the 60S large ribosomal subunit, which links the 40S and 80S subunits. Human mutant RPL10 proteins may exhibit altered translation of synaptic proteins, which may be important for synthesis of many NRC/MASC and PSD proteins.

Although the cellular function of many of these X-linked PSD proteins has been extensively studied, it is noteworthy that several are not considered to be postsynaptic, either because of the lack of specific functional studies in neurons or because of the expected noncytoplasmic subcellular localization (transcription or translation factors). For instance, several proteins involved in the regulation of transcription or translation, such as CDKL5 and RPL10, have been identified in PSD complexes. Interestingly, the subcellular localization of the CDKL5 protein is primarily nuclear, as shown in several reports,86,87 but a weak cytoplasmic signal suggests that this protein can also exhibit some protein-protein interactions in this compartment. Indeed, the presence of four SH3-binding sites at its C-terminal part could lead to the formation of specific interactions with numerous PSD proteins that possess such SH3 domains. Dystrophin is not generally considered to be present at the PSD (e.g., in Duchenne muscular dystrophy), but several studies showed that this protein is localized subcellularly to the PSD.8890 Furthermore, Kim et al. demonstrated that dystrophin was absent from the PSD proteins in the brain of a patient with Duchenne muscular dystrophy but was present in the brain of an age-matched control.91 It is also important to note that the PSD and NRC/MASC isolation and mass spectrometry methods are not perfect and that lists of proteins will contain a low level of contaminants, as well as exclude some proteins that failed to be detected. Thus, refinement in methods and sample preparation will lead to updated lists of PSP proteins.

XLMR Genes outside the PSP

Clearly, not all XLMR genes encode for proteins in postsynaptic complexes; of the 70 XLMR genes identified to date, 19 (27%) fall into the PSP categories. It is interesting to consider how, if at all, the non-PSP XLMR genes are functionally connected to the PSP XLMR genes. Clearly, NRC/MASC proteins could be regulated by enzymes and pathways outside the synapse (e.g., trafficking and posttranslational modifications), and we can consider that the effects of mutation in non-PSP XLMR mediate their effects by alteration of NRC/MASC and PSD. Toward this, it is known that a significant proportion of non-PSP XLMR genes code for proteins involved in signal transduction and regulation of transcription and those that impact synaptic function and dendrite development.

At least five proteins are directly involved in synaptic function and activity: FMRP, which binds to and is involved in the metabolism of neuronal mRNAs, including PSD-95, whose localization and regulated translation play central roles in neurite outgrowth and synaptic plasticity (S. G. N. Grant, unpublished data)92; OPHN1 (oligophrenin 1 [MIM 300127]); PAK3 (p21-activated kinase 3 [MIM 300142]); FGD1 (FYVE, RhoGEF, and PH domain–containing protein 1 [MIM 300546]); and ARHGEF6 (Rho guanine nucleotide exchange factor 6 [MIM 300267]), which are required for the regulation of the RhoGTPase signaling pathway. These proteins integrate extracellular and intracellular signals to orchestrate coordinated changes in the actin cytoskeleton, which is essential for directed neurite outgrowth and the regulation of synaptic connectivity.93

Very recently, Tarpey et al. identified mutations in the gene encoding the sigma 2 subunit of the adaptor protein 1 complex (AP1S2 [MIM 603532]) causing XLMR.94 AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Tarpey et al.94 propose that aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the families with XLMR and that such defects may cause abnormal synaptic development and function. Interestingly, we previously identified11 several PSD proteins that participate in the formation of the clathrin vesicle (see table A1).

Many of the non-PSP genes code for proteins involved in chromatin remodeling and regulation of transcription, which would mean that controlled activation/repression of their targeted genes may be crucial for cognitive function. A good example is the MECP2 gene (methyl-CpG–binding protein 2 [MIM 300005]), which causes Rett syndrome and XLMR and acts as a transcriptional silencer of neuronal genes. Particularly, MECP2 regulates the expression of the gene encoding brain-derived neurotrophic factor (BDNF [MIM 113505]), a secreted protein that has crucial roles in survival, development, and synaptic plasticity in the nervous system.95 Thus, it is not surprising that defects affecting these signaling cascades going from the postsynaptic membrane to the nucleus, which are pivotal for the formation of learning and the memory, lead to cognitive impairments.

Autosomal PSP Genes and MR-Associated Diseases

The high percentage of X-linked genes in NRC/MASC (85%) and PSD (49%) is indicative of similar roles of autosomal genes in MR. Of the 1,180 genes coding PSP proteins, >1,000 are located on the autosomes and can be considered potential candidates in psychiatric disorders; thus, the expectation is that the majority of MR genes will be found on autosomes and will include many NRC/MASC genes. Indeed, we curated literature on autosomal NRC/MASC genes in disease, and almost 50 genes were involved in various brain disorders.30

Several autosomal genes have already been implicated in autosomal MRX and MRXS.40,47 Interestingly, recent studies have pointed out the involvement of some PSD ion channels in MR associated with autistic disorder. Splawski et al. found gain-of-function mutations in the CACNA1C (calcium channel, voltage-dependent, l type, alpha-1C subunit [MIM 114205]) gene in individuals affected by multiorgan dysfunction, cognitive abnormalities, and autism.96 The encoded protein is involved in calcium-induced calcium release and the calcium intracellular signaling pathway. Recently, the haploinsufficiency of the KCNMA1 (potassium channel, calcium-activated, large conductance, subfamily M, alpha member 1 [MIM 600150]) gene has been involved in autism and MR.97 The knockout mouse model for this gene showed some behavioral alterations and cerebellar Purkinje neurons dysfunction.98

Thanks to the development of genomewide screening technologies such as BAC–comparative genomic hybridization arrays, the association of de novo chromosomal disorders associated with autosomal MR (microdeletions, duplications, or translocations) has led to the definition of genomic territories encompassing genes of PSD proteins. For instance, Willatt et al. described a form of MRXS associated with a 1.5-Mb 3q29 microdeletion.99 The deletion encompasses 22 genes, including PAK2 (p21-activated kinase 2 [MIM 605022]) and DLG1 (discs large, Drosophila, homolog of, 1 [MIM 601014]), which are autosomal homologues of two known XLMR genes, PAK3 and DLG3. The encoded DLG1 protein (also named “SAP97”) belongs to the NRC/MASC complex and is also linked to AMPA receptors (table A1 and fig. 4). Very recently, Shaw-Smith et al. reported that a recurrent 500- to 650-kb microdeletion located at 17q21.3 is associated with developmental delay and learning disability.100 Interestingly, this deletion encompasses the MAPT (microtubule-associated protein tau [MIM 157140]) gene, which encodes a protein present in the PSD complex.

Conclusions

Network Organization and Integration of Postsynaptic Signaling

The function of NRC/MASC in synaptic physiology and behavior has been studied using both reductionist single-gene strategies and, more recently, large-scale systems-biology approaches.27,28 As discussed above, the phenotypes of single gene mutations (in humans and mice) have supported the biochemical model that the NRC/MASC complex is important as an overall structure in cognition. At the cell biological level, where it has been extensively studied using mutations and drugs in brain slices, the NRC/MASC complex is necessary for the process of induction of synaptic plasticity. This induction involves the detection of patterns of synaptic activity and the initiation of biochemical pathways that lead to changes in the property of the synapse and other parts of the neuron. The fact that NRC/MASC proteins are involved with activation of local synaptic events, such as changes in AMPA receptors and dendritic spine structure, as well as distant events at the nucleus, indicates that the complex must coregulate these processes.

The coregulation of multiple cell biological processes (e.g., receptor trafficking and protein translation and transcription) by NRC/MASC can be accounted for by the network properties of the protein interactions within the complexes (figs. 2 and 3).28 In this model, activation of kinases and phosphatases and other enzymes is followed by a high degree of cross talk and interaction between proteins and pathways. In this way, signals are integrated and many proteins play a role in the final outcome, which includes the driving and orchestration of the downstream biological processes. This model has been supported by statistical and experimental data. Another important feature of the networks is that they can account for the property of robustness to perturbation; that is, the loss of any single gene only partially interferes with the overall process that the complex is involved with, such as induction of synaptic plasticity. The severity of the phenotype of the single-gene mutation is a reflection of the degree of connectivity of the protein with other parts of the complex. More details of the robustness are described in the work by Pocklington et al., in which the connectivity of proteins was plotted as a function of the mutational phenotype.27,28

These network models provide a logical process to extend the human genetics of cognition beyond finding individual genes and toward understanding gene interactions. When the view that more than one gene is involved in function of the complex (and cognition) is considered, then the relative position (connectivity) of those two genes will influence the phenotype. This principle is valid for NRC/MASC genes, since epistasis was observed among three genes when tested using double knockouts.101 One future approach is to examine the frequency of alleles of NRC/MASC genes and their combinations in groups of individuals with cognitive deficits and disorders. An additional exciting dimension to these network models of genetic disorders is the prospect that therapeutic interventions can be predicted for molecular targets that could rescue the mutation. For example, if a mutation affects a component of a signaling pathway within the complex, then a drug may be able to activate some compensatory pathway that is connected via a set of local protein interactions. These approaches may open new therapeutic opportunities for some of these currently untreated conditions of XLMR.

The model of a postsynaptic signaling network is simplified here, and it should be noted that the effects of mutations on this network will result not only in altered signaling at diseased synapses but also in changes in neuronal structure. The NMDA receptor is a well-known regulator of synaptic morphology, as are many postsynaptic proteins.1,5,6 Furthermore, dendritic spines that contain the NRC/MASC are irregularly shaped and have abnormal densities in a number of cognitive disorders characterized by MR, such as MRX, Down syndrome, Angelman syndrome, and autism.102105 It is also important to consider that some PSD gene deficits lead to MR with or without brain abnormalities. This would mean that not only can the PSD complex be important for the establishment and maintenance of synaptic connection and activity but that it can also be crucial for the structure of some brain regions; for instance, L1CAM mutations are associated with agenesis of the corpus callosum and hydrocephalus (table 2), and ATRX and SYN1 mutations cause microcephaly. The relative contribution to morphological changes and their differences in brain regions may also reflect the developmental and regional expression profiles of these genes.

The molecular networks described for the NRC/MASC can now be extended to the other proteins in the PSD and to non-PSP genes, to provide more-comprehensive molecular neuronal networks. The landscape of these networks and the locations of disease genes may ultimately provide logic to the behavioral phenotypes of patients.

Cognition and the X Chromosome

Beyond disease genetics, the molecular understanding of synaptic processes and the X chromosome may shed light on wider issues in behavioral science. Genes on the X chromosome not only influence general intelligence but also have relatively specific effects on social cognition and emotional regulation. Zechner et al. suggest that the X chromosome has been engaged in the development of sexually selected characteristics for at least 300 million years and that natural selection has favored the development of X-linked genes that are associated with higher cognitive abilities.106 Moreover, Skuse proposes that male and female brains may differ not only because of their contrasting genetic constitutions but also because of their sex-steroid environments and that differences in cognitive and social abilities between the sexes could be directly linked to the influence of X-chromosome genes.33 Another study pointed out that the contribution of X-linked genes to cognition is significantly higher than would be expected.47 Interestingly, a recent study reported that X-linked genes are highly expressed in brain tissues of several mammalian species, and it showed a greater proportion of highly expressed X-linked genes in human versus mouse brain.107 These data suggest that, through evolution, the X chromosome has become a repository for genes highly expressed in brain and that such genes may have a role in enhancing cognitive functions.

Summary

Here, we have integrated studies of human X-linked diseases with mouse genetic and proteomic studies of the PSP. It is clear that proteomic profiling of NRC/MASC and PSD proteins provides a rich source of disease-relevant genes. The data from human and mouse genetic studies also support the model that the NRC/MASC is necessary for cognitive function. In the near term, we suggest two important future directions: (i) comprehensive and systematic studies of NRC/MASC and PSP genes in human brain disorders with the use of genetic methods and (ii) systems biology–based approaches to the synapse with the use of large-scale data sets integrated with bioinformatics approaches. These approaches, which are being pursued in the G2C project, should provide a novel foundation for future therapeutic developments aimed at treating common cognitive disorders. Detailed lists of the proteins described here are available in table A1, together with curated data on human genetic disorders and mouse mutations in the G2C database. This neurobiological approach of integration of proteomics, mouse and human genetics, and network biology is generally applicable to any biological or pathological condition.

Acknowledgments

This work was supported by the Wellcome Trust and the G2C program. We thank A. J. Pocklington for figure 2, M. T. Ross and C. N. G. Anderson for comments on the manuscript, and J. Turner for manuscript preparation.

Appendix A

Table A1. .

PSD Proteome Data Set Identified by Mass Spectrometry and Antibody-Based Methods[Note]

Proteins in
Complexesc
Other Structuresd
Protein Classa and Name Swiss Prot Accession Number PPID Accession Number UniGene Cluster Identification Number MIM Number Chromosome Locationb NRC/MASC AMPA mGluR5 Clathrin Vesicle Mitochondria
Channels and receptor(s):
 Glutamate receptor(s):
  AMPA-R1 and GRIA1 P23818 A0296 Mm.4920 138248 5q33 1
  AMPA-R2 and GRIA2 P23819 A0297 Mm.220224 138247 4q32-q33 2
  AMPA-R3 and GRIA3 Q9Z2W9 A0299 Mm.327681 305915 Xq25-q26 3
  AMPA-R4 and GRIA4 P19493 A0300 Mm.209263 138246 11q22-q23 4
  GLUR6 and GRIK2 P39087 A0022 Mm.332838 138244 6q21 1
  GRID2 Q61625 A0328 Mm.321227 602368 4q22
  MGLUR1 and GRM1 Q9EPV6 A0103 Mm.370186 604473 6q24 2
  MGLUR3 and GRM3 Q9QYS2 A1353 Mm.318966 601115 7q21.1-q21.2
  MGLUR5 and GRM5 P31424 A0327 Mm.235018 604102 11q14.3 3
  MGLUR7 and GRM7 P35400 A0453 Mm.240881 604101 3p25.1-p26.1
  NR1 and GRIN1 Q62683 A0001 Mm.278672 138249 9q34.3 4
  NR2A and GRIN2A O08948 A0002 Mm.2953 138253 16p13 5 1
  NR2B and GRIN2B Q62684 A0003 Mm.322010 138252 12p12 6
  NR2D and GRIN2D Q03391 A0005 Mm.152584 602717 19q13-qter
 Other ligand receptors:
  CIRL1 and LPHN1 O88917 A0038 Mm.260733 19p13.2
  CIRL3 and LPHN3 Q9Z173 A3463 Mm.273631 4q13.1
  GABA-A-R1 and IFNAR2 P18504 A0504 Mm.6834 602376 21q22.1
  GABABR1 Q9WV18 A0603 Mm.32191 603540 6p21.3
  GABA-B-R2 and GPR51 O88871 A2000 Mm.101909 607340 9q22.1
  PGRMC1 O55022 A3464 Mm.9052 300435 Xq22-q24
 Ca2+ ATPases:
  ATP2A2 O55143 A3467 Mm.227583 108740 12q23-q24.1
  ATP2B1 P11505 A3465 Mm.166944 108731 12q21-q23 2
  ATP2B2 Q9R0K7 A0508 Mm.321755 108733 3p26-p25 1
  ATP2B3 Q64568 A3466 Mm.210095 300014 Xq28
  ATP2B4 Q64542 A0114 Mm.188617 108732 1q25-q32 7
 NA+/K+ ATPases:
  ATP1A1 P06685 A0340 Mm.280103 182310 1p13-p11 8 5 3
  ATP1A2 P06686 A0341 Mm.207432 182340 1q21-q23 4 2
  ATP1A3 Q9Z1G6 A0342 Mm.44101 182350 19q12-q13.2 9 5 3
  ATP1A4 Q9WV28 A0343 Mm.337950 607321 1q21-q32
  ATP1B1 P14094 A0344 Mm.4550 182330 1q22-q25 6 4
 Voltage- and ligand-gated Ca2+ channel:
  CACNA1A P54282 A0593 Mm.334658 601011 19p13 7
  CACNA1B O55017 A0592 Mm.4424 601012 9q34
  CACNA1C Q01815 A0770 Mm.236039 114205 12p13.3
  CACNA1E Q61290 A3471 Mm.298091 601013 1q25-q31
  CACNA2D1 O08532 A3474 Mm.173392 114204 7q21-q22
  CACNA2D2 Q9EQG2 A3472 Mm.273084 607082 3p21.3
  CACNA2D3 Q9Z1L5 A3473 Mm.370172 606399 3p21.1
  CACNB1 Q7TPF2 Mm.41252 114207 17q21-q22
  CACNB3 P54285 A3476 Mm.3544 601958 12q13
  CACNG3 Q9JJV5 Mm.241121 606403 16p13.1-p12
 Voltage-gated K+ channel:
  KCNJ4 P52190 A1867 Mm.140760 600504 22q13.1
  KCNMA1 Q8VHF1 Mm.343607 600150 10q22.3
  KCNQ2 Q9Z343 A3477 Mm.40615 602235 20q13.3
  KV1.2 and KCNA2 P15386 A0764 Mm.56930 176262 1p13
  KV2.2 and KCNAB2 Q64284 A3478 Mm.302496 601142 1p36.3
 Voltage-dependent anion channels:
  VDAC1 Q60932 A0425 Mm.3555 604492 5q31 10 1
  VDAC2 Q60930 A0426 Mm.262327 193245 10q22 11 2
  VDAC3 Q60931 A3479 Mm.227704 8p11.2 3
 Na+ channel:
  SCN2A2 Q99250 A0598 Hs.470470 601219 2q23-q24
  SCN4A P15390 Mm.218743 603967 17q23.1-q25.3
 Ca2+-release channels:
  INSP3R and ITPR1 P11881 A0154 Mm.227912 147265 3p26-p25 8
  RYR2 Q9ERN6 A3480 Mm.239871 180902 1q42.1-q43
 Other channels and receptors:
  APP P12023 A1169 Mm.277585 104760 21q21
  ATP6N1A Q9Z1G4 A0414 Mm.340818 192130 17q21
  ATP6V1H Q9UI12 A0409 Mm.27082 608861 8p22-q22.3 5
  BAI1 O14514 A1017 Mm.43133 602682 8q24
  BAI3 O60242 Mm.336569 602684 6q12
  CNTFR Q08406 A3490 Mm.272210 118946 9p13
  EDG-1 O08530 A3491 Mm.982 601974 1p21
  EPHA4 Q80VZ2 Mm.3249 602188 2q36.1
  EPHB1 P54762 A0542 Mm.22897 600600 3q21-q23
  F2RL1 Q63645 Mm.1614 600933 5q13
  F2RL3 Q920E0 Rn.81079 602779 19p12
  C1QBP O35658 A1608 Mm.30049 601269 17p13.3 4
  GEPHYRIN Q03555 A0637 Mm.341742 603930 14q24
  GPR85 Q9NPD1 Mm.167625 605188 7q31
  HCN2 O88703 A3486 Mm.12956 602781 19p13.3
  IL1RAPL1 Q9NZN1 Mm.267669 300206 Xp22.1-p21.3
  LRP1 Q61291 A1175 Mm.271854 107770 12q13.1-q13.3
  NTRK2 P15209 A0506 Mm.130054 600456 9q22.1
  PLEXIN A1 P70206 A3482 Mm.3789 601055 3q21.3
  PLEXIN A2 P70207 A3483 Mm.2251 601054 1q32.2
  AGER Q63495 A1094 Mm.3383 600214 6p21.3
  SLC12A5 Q91V14 A3489 Mm.252987 606726 20q13.12 9
  SLC17A7 Q62634 A4034 Mm.255631 605208 19q13
  SLC1A2 P43006 A0422 Mm.267547 600300 11p13-p12 12 6
  SLC4A10 Q9EST0 A3481 Mm.314497 605556 2q23q24
  SLC4A3 P16283 A3488 Mm.5053 106195 2q36
  SLC4A4 O88343 A3485 Mm.41044 603345 4q21 10
  SLC8A2 P48768 A3484 Mm.241147 601901 19q13.3
MAGUK(s)/adaptor(s)/scaffolder(s):
 PDZ domain–containing scaffolders:
  ACZONIN and PCLO Q9QYX6 A0568 Mm.332219 604918 7q11.23-q21.1
  CASK O70589 A0125 Mm.370173 300172 Xp11.4
  CHAPSYN-110 and DLG2 Q63622 A0014 Mm.257035 603583 11q21 13
  DLGH2 and MPP2 Q9WV34 A0436 Mm.36242 600723 17q12-q21 14
  DLGH3 and MPP3 O88910 A0435 Mm.20449 601114 17q12-q21 15
  GRIP1 Q925T6 A0301 Mm.196692 604597 12q14.3 11
  GRIP2 Q9C0E4 A0302 Mm.333264 3p24-p23
  HOMER1 Q9Z216 A0104 Mm.37533 604798 5q14.2 16 12
  HOMER3 Q99JP6 Mm.10022 604800 19p13.11
  MAGUIN and CNKSR2 Q9R093 A0137 Mm.197074 Xp22.12
  MPP6 Q9WV37 A0793 Mm.41288 606959 7p21-p15
  PICK1 and PRKCABP Q62083 A0449 Mm.259464 605926 22q12.3-q13.2
  PROSAP2 and SHANK3 Q9JLU4 A0074 Mm.146855 606230 22q13.3
  PSD-95 and DLG4 Q62108 A0013 Mm.27256 602887 17p13.1 17
  SAP102 and DLG3 P70175 A0016 Mm.4615 300189 Xq13.1 18
  SAP97 and DLG1 Q62402 A0015 Mm.382 601014 3q29 19
  SHANK1 Q9WU13 A0075 Mm.358922 604999 19q13.3 20 13
  SHARPIN Q9H0F6 A0602 Mm.41463 8q24.3
  ZO-1 and TJP1 P39447 A0086 Mm.4342 601009 15q13 21
  ZO-2 and TJP2 P70625 A1881 Mm.104744 607709 9q12-q13
 Non–PDZ domain–containing scaffolders:
  AGRIN P25304 A3494 Mm.273098 103320 1pter-p32
  AKAP5 P24587 A0143 Mm.311452 604688 14q21-q24 22
  AKAP2 O54931 A0796 Mm.348266 604582 9q31-q33
  APPL Q8K3H0 A0188 Mm.202322 604299 3p21.1-p14.3 23
  ARGBP2 and KIAA0777 O35413 A0109 Mm.211096 4q35.1
  BAIAP2 Q60437 A1015 Mm.197534 605475 17q25
  BEGAIN and KIAA1446 O88881 A0228 Mm.342085 14q32.2
  CASKIN1 Q8VHK2 A3990 Mm.70989 16p13.3
  CRIPT O70333 A0275 Mm.109329 604594 2p21
  DAP4 and DLGAP4 Q9Y2H0 Mm.22094 20q11.23
  DLGAP2 P97837 A0447 Mm.323861 605438 8p23
  EPS15R and EPS15L1 Q60902 A3493 Mm.288894 19p13.11
  FLOTILLIN-1 O08917 A3496 Mm.2931 606998 6p21.3
  FLOTILLIN-2 Q60634 A3497 Mm.130227 131560 17q11-q12
  GKAP and DLGAP1 P97841 A0107 Mm.311840 605445 18p11.3 24
  GRB10 Q60760 A0270 Mm.273117 601523 7p12-p11.2
  GRB2 Q60631 A0126 Mm.6900 108355 17q24-q25 25
  JIP-1 and MAPK8IP1 O35145 A0162 Mm.2720 604641 11p12-p11.2 26
  LIME and FLJ20406 Q9EQR5 A3495 Mm.272712 20q13.3
  NCKAP1 Q9Y2A7 A0545 Mm.25203 604891 2q32.1-q32.2
  NBEA Q9EPM9 A3492 Mm.256536 604889 13q13
  RACK1 and GNB2L1 P25388 A0124 Mm.5305 176981 5q35.3 27
  RC3 and DMXL2 O94938 A4033 Hs.511386 15q21.2
  SH3KBP1 Q8R550 Mm.286495 300374 Xp22.1-p21.3
  SHC1 P98083 A0171 Mm.86595 600560 1q21
  SORBS1 Q62417 A0100 Mm.210815 605264 10q23.3-q24.1
  SOS1 Q62245 A0159 Mm.60975 182530 2p22-p21
  TRAF-3 Q60803 A0862 Mm.27431 601896 14q32.32
  WDR6 Q99ME2 Mm.193395 606031 3p21.31
  YOTIAO and AKAP9 Q99P24 A0009 Mm.46044 604001 7q21-q22 28
 14-3-3:
  14-3-3 beta and YWHAB P35213 A0467 Mm.34319 601289 20q13.1 14
  14-3-3 epsilon and YWHAE P42655 A0280 Mm.234700 605066 17p13.3 29
  14-3-3 eta and YWHAH P11576 A0633 Mm.332314 113508 22q12.3-q13.2 30 15
  14-3-3 gamma and YWHAG P35214 A0362 Mm.233813 605356 7q11.23-q21.1 31 16 5
  14-3-3 sigma and SFN Q9JJ20 A0901 Mm.44482 601290 1p36.11
  14-3-3 theta and YWHAQ P35216 A0907 Mm.289630 609009 2p25.1 17
  14-3-3 zeta and YWHAZ P35215 A0361 Mm.332735 601288 2p25.2-p25.1 32 18 6
Ser/thr kinase(s):
 AAK1 Q9UPV4 A3502 Mm.116833 2p24.3-p14
 AKT2 Q60823 A0466 Mm.177194 164731 19q13.1-q13.2 33
 CAMKII alpha P11798 A0011 Mm.131530 114078 5q32 34
 CAMKII beta P28652 A1851 Mm.4857 607707 7p14.3-p14.1 35
 CAMKII delta P15791 A1853 Mm.255822 607708 4q26
 CAMKII gamma P11730 A1852 Mm.235182 602123 10q22
 CDC42BPB O54875 A3504 Mm.27397 14q32.3
 CDK5 P49615 A0667 Mm.298798 123831 7q36
 CDKL2 Q92772 Mm.44963 603442 4q21.1
 CDKL5 O76039 Mm.336310 300203 Xp22
 CK-1 and CSNK1A1 P97633 A0896 Mm.26908 600505 13q13
 CK-2 alpha and CSNK2A1 Q60737 A0753 Mm.23692 115440 20p13 19
 CK-2 beta and CSNK2B P13862 Mm.7405 115441 6p21.3 7
 CSNK1E Q99PS2 A4036 Mm.30199 600863 22q12-q13
 DCAMKL1 Q9JLM8 A3506 Mm.295263 604742 13q13
 EMK1 Q05512 A3505 Mm.258986 600526 11q12-q13
 ERK1 and MAPK3 Q91YW5 A0265 Mm.8385 601795 16p11.2 36
 ERK2 and MAPK1 P27703 A0181 Mm.196581 176948 22q11.2 37
 GRK2 and ADRBK1 P26817 A0813 Mm.254144 109635 11cen-q13
 GSK3 BETA Q9WV60 A0222 Mm.200770 605004 3q13.3 38
 MAP2K3 O09110 A0491 Mm.18494 602315 17q11.2 39
 MAP3K12 Q60700 A1730 Mm.172897 600447 12q13
 MAP4K4 P97820 A0177 Mm.19073 604666 2q11.2-q12
 MAP4K6 and MINK1 Q9JM92 A3503 Mm.42967 17p13.2
 MAPKP49 and MAPK10 Q61831 A0489 Mm.39253 602897 4q21.32 40
 MEK1 and MAP2K1 P31938 A0266 Mm.248907 176872 15q21 41
 MEK2 and MAP2K2 Q63932 A0267 Mm.275436 601263 7q32 42
 MKK7 and MAP2K7 O35406 A0164 Mm.3906 603014 19p13.3-p13.2 43
 MKP2 and DUSP4 Q62767 A0287 Mm.170276 602747 8p12-p11 44
 NOVEL CAMK and MGC8407 Q63092 A3499 Mm.274540 3p21.31
 PDPK1 Q9Z2A0 A0260 Mm.10504 605213 16p13.3 45
 PKA-R2A P12367 A0305 Mm.253102 176910 3p21.3-p21.2
 PKA-R2B P12369 A0306 Mm.25594 176912 7q22 46
 PKB and AKT1 P31750 A0189 Mm.6645 164730 14q32.3
 PRKCA P20444 A0307 Mm.222178 176960 17q22-q23.2
 PRKCB1 P04411 A0168 Mm.207496 176970 16p11.2 47
 PRKCE P16054 A0144 Mm.287660 176975 2p21 48
 PRKCG P05697 A0259 Mm.7980 176980 19q13.4 49
 PRKACB P05206 A4037 Mm.16766 176892 1p36.1 50
 PRKAR1A Q9DBC7 A0304 Mm.30039 188830 17q23-q24
 PRKCL1 Q63433 A0871 Mm.213000 601032 19p12
 PRKG2 Q61410 A3500 Mm.263002 601591 4q13.1-q21.1
 RAF1 Q99N57 A0138 Mm.184163 164760 3p25 51
 ROCK-2 P70336 A3501 Mm.276024 604002 2p24
 RPS6KB1 Q9CST0 A0337 Mm.210134 608938 17q23.2
 RSK2 P18654 A0268 Mm.328476 300075 Xp22.2-p22.1 52
 STK39 Q9Z1W9 A0166 Mm.198414 607648 2q24.3 53
 TBK1 Q9WUN2 A3507 Mm.34580 604834 12q14.1
 TNIK Q9UKE5 Mm.126193 3q26.2
 TRAD Q8TBQ5 A3529 Mm.260934 608128 3q21.2
Tyr kinases:
 LYN P25911 A0522 Mm.317331 165120 8q13
 LCK P06240 A0463 Mm.293753 153390 1p35-p34.3
 FES P16879 A3508 Mm.48757 190030 15q26.1
 FYN P39688 A0019 Mm.4848 137025 6q21
 PYK2 and PTK2B Q9QVP9 A0030 Mm.21613 601212 8p22-p11.2 54
 SRC P05480 A0018 Mm.22845 190090 20q12-q13 55
 YES1 Q04736 A0553 Mm.4558 164880 18p11.3
Protein phosphatase(s):
 DUSP3 Q9D7X3 Mm.196295 600183 17q21
 DUSP10 Q8R3L3 Mm.266191 608867 1q41
 FLJ90311 and FLJ22405 Q8VEL2 A4016 Mm.197816 3p26
 PP2B and PPP3CA P20652 A0123 Mm.331389 114105 4q21-q24 56
 PPP5C O35299 A0289 Mm.3294 600658 19q13.3 57
 PPM1E Q8CB81 Mm.341988 17q23.2
 PPP1CA Q9Z1G2 A0147 Mm.277629 176875 11q13
 PPP1CB P37140 A4043 Mm.241931 600590 2p23
 PPP1CC P37139 A4042 Mm.280784 176914 12q24.1-q24.2 58
 PPP1R9A O35867 A0510 Mm.332901 602468 7q21.3
 PPP1R9B O35274 A0273 Mm.229087 603325 17q21.33
 PPP2CA P13353 A0132 Mm.260288 176915 5q23-q31 59
 PPP2R1A Q96DH3 A0295 Mm.294138 605983 19q13.4 60
 PTP1D and PTPN11 P35235 A0020 Mm.8681 176876 12q24.1 61
 PTPN5 P54830 A0118 Mm.4654 176879 11p15.2-p15.1 62
 PTPRD Q64487 A1198 Mm.184021 601598 9p23-p24.3
 PTPRF Q9EQ17 A0223 Mm.29855 179590 1p32
 PTPRS Q9QW00 A2624 Mm.258771 601576 19p13.3
 PTPZETA Q9WUT8 A1202 Mm.41639 176891 7q31.3
 SBF-1 O60228 A3509 Mm.35483 603560 22q13.33
G protein(s):
 DIRAS1 Q91Z61 Mm.44995 607862 19p13.3
 DIRAS2 Q96HU8 A4017 Mm.25648 607863 9q22.2
 GNAI2 P08752 A0055 Mm.196464 139360 3p21 8
 GNAO1 P18872 A0043 Mm.251445 139311 16q13 20
 GNAQ P21279 A0042 Mm.195898 600998 9q21 21 9
 GNAS1 P04894 A0051 Mm.125770 139320 20q13.2 63
 GNAZ O70443 A0052 Mm.32595 139160 22q11.2
 GNB1 Q9QWG8 A0069 Mm.2344 139380 1pter-p31.2 64 10
 GNB2 P54312 A0070 Mm.30141 139390 7q21 65 11
 GNB4 P29387 A0072 Mm.139192 3q26.32 66
 GNB5 P54314 A0073 Mm.17604 604447 15q21.2
 HRAS Q61411 A0200 Mm.334313 190020 11p15.5 67
 KRAS2 P01118 Hs.505033 190070 12p12.1
 MRAS O08989 A3512 Mm.2045 608435 3q22.3
 NKIRAS1 Q9NYS0 Mm.25648 604496 3p24.2
 NRAS P08556 A0199 Mm.256975 164790 1p13.2
 RAB2 P53994 A0363 Mm.240224 179509 8q12.1 68 12
 RAB3A P05713 A0037 Mm.5083 179490 19p13.1-p12 69 22
 RAB5A O88565 A0359 Mm.329123 179512 3p24-p22
 RAB6A Q9JJD4 A0364 Mm.28650 179513 2q14-q21 70
 RAB8 and MEL P55258 A0620 Mm.162811 165040 19p13.2-cen
 RAB10 P61027 A0621 Mm.74596 2p23.3 23 13
 RAB12 P35284 A3513 Mm.248313 18p11.22
 RAB37 Q9JKM7 A0365 Mm.143789 17q25.1 71
 RAC1 P15154 A0194 Mm.292510 602048 7p22 72 14
 RAC2 Q9TU25 Mm.1972 602049 22q13.1
 RAC3 O95916 Mm.34008 602048 17q25.3
 RAL-A P05810 A0203 Mm.27348 179550 7p22-p15 73
 RAN P28746 A0152 Mm.297440 601179 12q24.3 74
 RAP1 A P10113 A0323 Mm.333868 179520 1p13.3
 RAP2A Q9D3D5 A0033 Mm.261448 179540 13q34 75
 RHOG and ARHG P35238 Mm.259795 179505 11p15.5-p15.4
 RHOT1 Q9H067 A3974 Mm.261491 17q11.2 7
 SEPT2 and NEDD5 P42208 A3515 Mm.242324 601506 2q37
 SEPT3 Q9Z1S5 A3516 Mm.309707 608314 22q13.2
 SEPT4 and PNUTL2 P28661 A3517 Mm.2214 603696 17q22-q23
 SEPT5 and PNUTL1 Q9Z2Q6 A3518 Mm.20365 602724 22q11.2 24
 SEPT6 Q9R1T4 A3519 Mm.260036 Xq24
 SEPT7 O55131 A3520 Mm.270259 603151 7p14.3-p14.1 25
 SEPT8 Q9ESF7 A3525 Mm.274399 608418 5q31
 SEPT9 and MSF Q9QZR6 A3521 Mm.38450 604061 17q25
 SEPT11 Q9NVA2 A3524 Mm.236587 4q21.1
G modulator(s):
 ARFGAP3 Q9D8S3 Mm.258910 22q13.2-q13.3
 ARHGEF2 Q9ESG7 A0843 Mm.239329 607560 1q21-q22
 ARHGEF7 O08757 A0646 Mm.244068 605477 16q12.5
 ARHGEF9 Q9QX73 A0707 Mm.44841 300429 Xq11.2
 CENTA1 O75689 Hs.135183 608114 12q11
 CENTG1 Q9JHW8 A3514 Mm.1939 605476 12q14.1
 CENTG2 Q9UPQ3 Mm.291135 608651 2p24.3-p24.1
 CENTG3 Q96P47 Mm.250703 7q36.1
 CGEF2 and RAPGEF4 Q9Z1P0 A3528 Mm.196153 606058 2q31-q32
 CITRON O88938 A0276 Mm.8321 605629 12q24.1-q24.3 76 26
 DAB2IP Q8TDL2 Mm.29629 9q33.1-q33.3
 DOCK3 Q8IZD9 Mm.150259 603123 3p21.31
 ELMO2 Q96JJ3 Mm.35064 606421 20q13.2
 FMNL Q9JL26 A4046 Mm.138913 604656 17q21
 FGD4 Q91ZT5 A0470 Mm.256131 12p11.21 77
 G3BP2 P97379 Mm.290530 4q21.1
 GAP43 P06837 A0215 Mm.1222 162060 3q13.1-q13.2 78 15
 GDI1 P50398 A0567 Mm.205830 300104 Xq28 27 16
 GIT1 Q9Z272 A3532 Mm.290182 608434 17p11.2
 GNG12 Q9DAS9 A0067 Mm.234342 1p31.2
 GOLGA2 Q921M4 A3209 Mm.106376 602580 9q34.11
 KALIRIN and HAPIP Q9JIF2 A0214 Mm.260934 604605 3q21.1-q21.2 79
 IQSEC1 Q96D85 A2428 Mm.196943 3p25.2
 KIAA1688 Q9C0H5 A3530 Mm.291713 8q24.3
 RABEP1 O35550 A0589 Mm.7087 603616 17p13
 NF1 Q04690 A0196 Mm.255596 162200 17q11.2 80
 NGEF Q923H2 A1069 Mm.143717 605991 2q37
 PSD Q9ESQ7 A2431 Hs.154658 602327 10q24
 PSD3 Q9NYI0 A2433 Mm.32525 8pter-p23.3
 RAB11FIP2 Q7L804 Mm.114056 608599 10q26.11
 RANBP9 O94764 A4047 Mm.148781 603854 6p23
 RAP1GA1 Q8K2L6 Mm.180763 600278 1p36.1-p35
 RAPGEF2 Q8CHG7 A0034 Mm.31220 4q32.1
 RASAL2 Q8BU92 Hs.167371 606136 1q24
 RASGRF2 P70392 Mm.248630 606614 5q13
 RGS6 P49801 Mm.153013 603894 14q24.3
 RGS7 O54829 A0932 Mm.7956 602517 1q23.1
 RGS8 P49804 Hs.458417 607189 1q25
 RGS17 Q9QZB0 Mm.44606 607191 6q25.3
 RGS19IP1 Q9Z0G0 A1159 Mm.20945 605072 19p13.1
 SYNGAP1 Q9ESK6 A0024 Mm.291291 603384 6p21.3 81
 VAV2 Q60992 Mm.179011 600428 9q34.1
Signaling molecules and enzymes:
 Heat shock/chaperone(s)/chaperonin(s):
  BAG2 Q91YN9 Hs.55220 603882 6p12.3-p11.2
  BIP and HSPA5 P20029 A0451 Mm.330160 138120 9q33-q34.1
  CCT1 and TCP1 P11983 A3541 Mm.32019 186980 6q25.3-q26
  CCT2 P80314 A3540 Mm.247788 605139 12q15
  CCT3 P80318 A3544 Mm.256034 600114 1q23
  CCT4 P80315 A3538 Mm.296985 605142 2p15
  CCT5 P80316 A3543 Mm.282158 5p15.2
  CCT6A P80317 A3545 Mm.153159 104613 7p11.2
  CCT7 P80313 A3539 Mm.289900 605140 2p13.2
  CCT8 P42932 A3542 Mm.328673 21q22.1
  CRYAB P23927 Mm.178 123590 11q22.3-q23.1
  DNAJA1 P54102 A3536 Mm.27897 602837 9p13-p12
  DNAJA2 Q9QYJ0 A3535 Mm.279692 16q11.1-q11.2
  DNAJA3 Q99M87 Mm.248337 16p13.3 8
  DNAJB6 O54946 A1578 Mm.290110 7q36.3
  DNAJB10 and DNAJB2 Q9QYI5 Mm.248776 604139 2q32-q34
  DNAJC6 O75061 A0685 Mm.76494 608375 1pter-q31.3
  HSC-71 P08109 A0146 Mm.290774 600816 11q24.1 9
  HSP105A and HSPH1 Q61699 A3533 Mm.270681 13q12.3
  HSP60 and HSPD1 P19226 A3550 Mm.1777 118190 2q33.1 10
  HSP74 and HSPA9B P38647 A2010 Mm.209419 600548 5q31.1 11
  HSP90 and HSPCB P11499 A2003 Mm.2180 140572 6p12 12
  HSPA1A P17879 A2007 Mm.6388 140550 6p21.3 82
  HSPA12A O43301 A3534 Mm.39739 10q25.3
  HSPB1 P04792 Mm.13849 602195 7q11.23
  DNAJC11 Q9NVH1 A3537 Mm.21353 1p36.31
  SNCA O55042 A0905 Mm.17484 163890 4q21 17
  SSR1 Q99MP2 A3549 Mm.138725 600868 6p24.3
  TRA1 P08113 A2004 Mm.87773 191175 12q24.2-q23.4
  TXNDC7 Q922R8 A3548 Mm.222825 2p25.1
 Phosphodiesterase:
  CNP-1 P16330 A3553 Mm.15711 123830 17q21
  PDE2A Q01062 A3551 Mm.247564 602658 11q13.4
  PDE4B Q8VBU5 Mm.20181 600127 1p31
  PDE4D Q01063 Mm.343333 600129 5q12
  PDE10A Q9QYJ5 A3552 Mm.87161 6q26
  PDE11A Q8VID8 Mm.246613 604961 2q31.2
 Adenylate/guanylate cyclase:
  GUCY1A2 Q9WVI4 A1979 Mm.371695 601244 11q21-q22
 Secreted/secretory/signaling:
  BCAN Q61361 A3556 Mm.4598 1q31
  CSPG-2 Q62059 A3555 Mm.158700 118661 5q14.3
  OLFM1 O88998 A3557 Mm.43278 605366 9q34.3
  SEC8L1 O35382 A1304 Mm.265512 608185 7q31
 ATP synthase(s):
  ATP5A1 Q03265 A0377 Mm.276137 164360 18q12.q21 83 13
  ATP5B P56480 A0378 Mm.238973 102910 12q13.13 14
  ATP5C1 P35435 A0379 Mm.12677 108729 10p15.1 84 15
  ATP6A1 and ATP6V1A P50516 A0397 Mm.217787 607027 3q13.2-q13.31 85
  ATP6B2 and ATP6V1B2 P50517 A0400 Mm.249096 606939 8p22-p21
  ATP6C and ATP6V0C Q9Z1G3 A0401 Mm.276618 603097 16p13.3
  ATP6D and ATP6V1C1 P51863 A0403 Mm.17708 607028 8q22.3 86
  ATP6E and ATP6V1E1 P50518 A0404 Mm.29045 108746 22q11.1
  ATP6V1D P57746 A0402 Mm.311549 14q23.3
  ATAD3A Q925I1 A3559 Mm.241152 1p36.33
 NADH-ubiquinone oxidoreductase:
  NDUFA4 Q62425 Mm.41926 603833 7p21.3
  NDUFA8 Q9DCJ5 Mm.19834 603359 9q33.2-q34.11
  NDUFA9 Q16795 A3563 Mm.29939 603834 12p13.3 16
  NDUFA10 Q99LC3 A3560 Mm.248778 603835 2q37.3 17
  NDUFS1 P28331 A3561 Mm.218595 157655 2q33.q34 18
  NDUFS2 Q91WD5 A3562 Mm.21669 602985 1q23
  NDUFS3 Q9DCT2 A3564 Mm.30113 603846 11p11.11 19
  NDUFV2 Q9D6J6 A0431 Mm.2206 600532 18p11.31-p11.2 87 20
 Polyubiquitin:
  UBA52 P14793 Mm.43005 191321 19p13.1-p12
  UBB Q63446 A1256 Mm.282093 191339 17p12.p11.2
  UBC Q62317 A1257 Mm.331 191340 12q24.3 21
 Proteases/protease inhibitor(s):
  COPS-3 O88543 A3570 Mm.40 604665 17p11.2
  DPP-6 P46101 A3565 Mm.42078 126141 7q36.2
  KEL Q9EQF2 A3571 Mm.19958 110900 7q33
  PAD-1 and PSMD14 O35593 A3566 Mm.218198 607173 2q24.2
  PSMA4 Q9R1P0 A3567 Mm.30270 15q25.1
  PSMC3 Q63569 Mm.289832 186852 11p12-p13
  PSMD1 O88761 A3568 Mm.280013 2q37.1
  PSMD2 Q13200 Mm.243234 606223 3q27.1
  PSMD8 Q99JB5 A3569 Mm.273152 19q13.2
  PSMD10 Q9Z2X3 Mm.17640 603480 Xq22.3
  SERPINB4 P48594 Mm.283677 600518 18q21.3
  ST14 Q9JJI7 Mm.243926 606797 11q24-q25
  SYNJ2 O88399 A1731 Mm.236068 6q25.3-q26
 Development:
  BASP1 Q05175 A3574 Mm.29586 605940 5p15.1-p14
  BSG P18572 A3573 Mm.726 109480 19p13.3
  CBCP1 and C10ORF9 Q9CYN5 A3575 Mm.86523 10p11.21
  CNNM1 Q9JIQ6 A3998 Mm.39388 607802 10q24.2
  CYFIP1 O88558 A3579 Mm.37249 606322 15q11
  DAAM1 Q9CQQ2 A4001 Mm.87417 606626 14q23.1
  DBCCR-1 and DBC1 Q9QXL0 A3578 Mm.248788 602865 9q32-q33
  DTNA Q9D2N4 A3577 Mm.94371 601239 18q12
  ENAH Q03173 Mm.87759 1q42.12
  GDAP1 O88741 A3576 Mm.18218 606598 8q21.11
  GDAP1L1 Q8VE33 A3980 Mm.102080 20q12
  GPRIN1 Q9QZY2 A3581 Mm.41812 5q35.2
  LSAMP Q62813 A3572 Mm.310524 603241 3q13.2-q21 18
  LRRTM1 Q8K377 Mm.292568 2p12
  LRRTM2 O43300 Mm.39900 5q31.3
  LRRTM4 Q86VH4 Mm.94135 2p12
  NUMBL O08919 A2635 Mm.255487 604018 19q13.13-q13.2
  WIF1 Q924Y6 Mm.32831 605186 12q14.3
 Other signaling molecule(s):
  ANXA3 O35639 Mm.7214 106490 4q13-q22
  ARF2 Q91VR9 Mm.5061 3p21.2-p21.1
  ARF3 P16587 A0421 Mm.221298 103190 12q13.13 88
  ARC Q9WV31 A0277 Mm.25405 8q24.3 89
  ATPIF1 P55855 Mm.2171 1p35.3 22
  BAD Q61337 A0476 Mm.4387 603167 11q13.1 90
  BLNK O75498 A1114 Mm.9749 604515 10q23.2-q23.33
  BRP44L P63030 Mm.288510 6q27 23
  CALM1 P02593 A0008 Mm.285993 114180 14q24-q31 91 28
  CALML5 Q9NZT1 Mm.21075 605183 10p15.1
  CALRETININ and CALB2 P47728 A0437 Mm.2755 114051 16q22.2 92 29
  CCNG2 O08918 Mm.3527 603203 4q21.1
  CD59 P27274 A1630 Mm.247265 107271 11p13
  CDA08 Q99KW9 A4005 Mm.334685 16q12.1
  CDK5R1 Q62938 A0666 Mm.142275 603460 17q11.2
  CDK5RAP3 Q9JLH7 A4007 Mm.28297 608202 17q21.32
  CPNE6 Q9Z140 Mm.5249 605688 14q11.2
  COX-2 and PTGS2 Q05769 A0485 Mm.292547 600262 1q25.2-q25.3
  CPLA2 and PLAG2G4A P47713 A0106 Mm.4186 600522 1q25 93
  DGKB P49621 Mm.242576 604070 7p21.3
  DNM1 Q61358 A0095 Mm.44736 602377 9q34 94 30
  DNM2 P39052 A1927 Mm.39292 602378 19p13.2 31
  DYN3 and DNM3 Q8R3T9 A1928 Mm.29567 1q24.3
  EB-1 and MAPRE2 Q9NRX7 Mm.335310 607815 18q12.1
  EGF-164 and VEGF Q00731 A0434 Mm.282184 192240 6p12 95
  FUS P35637 A0217 Mm.277680 137070 16p11.2 96
  HIF-1A and ARNT P53762 A0488 Mm.250265 126110 1q21 97
  IRS-1 P35569 A0484 Mm.4952 147545 2q36 98
  NNOS and NOS1 Q9Z0J4 A0262 Mm.44249 163731 12q24.2-q24.31 99
  ODZ4 O70465 A4013 Mm.254610 11q14.1
  NRN1 O08957 Mm.232930 607409 6p25.1
  TP53BP1 Q12888 A0286 Mm.215389 605230 15q15-q21 100
  PIP5K2B O88377 Mm.39700 603261 17q12
  PLCG1 Q62077 A0012 Mm.44463 172420 20q12-q13.1 101
  PLCB1 Q9Z1B3 A0330 Mm.330607 607120 20p12 102 32
  PLEK Q9JHK5 A0919 Mm.98232 173570 2p13.3
  PRNP P04925 A4012 Mm.648 176640 20pter-p12
  P25 O94811 Mm.39752 608773 5p15.3
  RTN3 Q9ES97 Mm.246990 604249 11q13 19
  RTN4 Q9JK11 Mm.192580 604475 2p14-p13
  S100A4 P05942 Mm.3925 114210 1q21
  S100A9 P06702 A1551 Mm.2128 123886 1q12-q22
  S100B P50114 A1342 Mm.235998 176990 21q22.2-q22.3
  SERPINE2 and PI7 P07092 A1547 Mm.3093 177010 2q33-q35
  SPINK5 Q9NQ38 A4014 Mm.35369 605010 5q32 103
  STARGAZIN and CACNG2 O88602 A0473 Mm.277338 602911 22q13.1 104
  STRN O55106 A2120 Mm.24516 2p22-p21
  STRN4 P58404 Mm.21612 19q13.2
  STUB1 Q9WUD1 A3978 Mm.277599 607207 16p13.3
  TRIO O75962 A0739 Hs.130031 601893 5p15.1-p14
  VGF P20156 A2164 Mm.297818 602186 7q22
 Other enzymes:
  ACC1 Q925C4 A3582 Mm.31374 200350 17q21
  ACLY Q91V92 A3586 Mm.282039 108728 17q12-q21
  ADAR P55266 Mm.316628 601059 1q21.1-q21.2
  AGPAT5 Q9D1E8 A3630 Mm.24117 8p23.1
  AKR1A1 P51635 Mm.30085 103830 1p33-p32
  ALDH1A1 P24549 A3585 Mm.250866 100640 9q21.13
  ALDOA P05064 A1923 Mm.275831 103850 16q22-q24 33
  ALDOC P05063 A0428 Mm.7729 103870 17cen-q12 105 34
  BCR P11274 A0902 Mm.333722 151410 22q11.23
  BG1 Q99PU5 A3593 Mm.20592 15q23-q24
  BIRC6 O88738 Mm.290908 605638 2p22-p21
  CAT P24270 Mm.4215 115500 11p13
  CDIPT Q8VDP6 Mm.28219 605893 16p11.2
  CKB P07335 A3693 Mm.16831 123280 14q32 20
  COMTD1 Q8TE79 A3634 Mm.11827 10q22.2
  CPT2 P52825 Mm.307620 600650 1p32
  CRMP1 P97427 A3605 Mm.290995 602462 4p16.1-p15
  CUL5 Q9D5V5 Mm.218910 601741 11q22-q23
  CYLD Q9NQC7 Mm.24282 605018 16q12.1
  CYP1B1 Q64678 Mm.214016 601771 2p21
  DDX3Y P16381 A3652 Mm.108054 yq11.21
  DDOST O54734 A3619 Mm.7236 602202 1p36.1
  DDX1 Q91VR5 A3656 Mm.251255 601257 2p24
  DDX3X Q62167 A3653 Mm.289662 300160 Xp11.3-p11.23
  DDX5 Q61656 A0814 Mm.220038 180630 17q21
  DGKZ O08560 A1300 Mm.314923 601441 11p11.2
  DKFZP566O084 Q99J47 A3651 Mm.21475 17p12
  DKFZP761F069 Q9BQF9 A3641 Mm.29678 19p13.3
  DPM1 Q9WU83 A3638 Mm.201322 603503 20q13.13
  DPYSL4 O35098 A3606 Mm.250414 608407 10q26
  DPYSL5 Q9JMG8 A3610 Mm.27732 608383 2p23.3
  ENO1 P17182 A3615 Mm.70666 172430 1p36.3-p36.2 21
  ENO2 P21550 A3617 Mm.251322 131370 12p13 22
  ENO3 P17183 A3616 Mm.3913 131360 17pter-p11 23
  EXT2 P70428 Mm.4336 133701 11p12-p11
  FACL6 Q63835 A3659 Mm.267478 604443 5q31
  FASN Q9EQR0 A3584 Mm.236443 600212 17q25
  FLJ10842 and MULK Q9ESW4 A3620 Mm.32840 7q34
  FTHFD and ALDH1L1 P28037 A3594 Mm.30035 600249 3q21.2
  G9A and BAT8 Q9Z148 A0444 Mm.35345 604599 6p21.31 106
  GLNS and GLUL P15105 A0424 Mm.210745 138290 1q31 107 24
  GCS1 Q9Z2W5 A3592 Mm.28188 601336 2p13-p12
  GSTO1 Q9Z339 A1969 Mm.29457 605482 10q25.1
  GUCY1B1 and GUCY1B3 O54865 A1980 Mm.9445 139397 4q31.3-q33
  HADH2 O70351 Mm.6994 300256 Xp11.2
  HARS2 Q9DD18 Mm.28109 20p11.23
  HSD17B4 P97852 Mm.277857 601860 5q21
  HSD17B12 O70503 A3633 Mm.22505 11p11.2
  IMPA1 P97618 Mm.183042 602064 8q21.13-q21.3
  INPP4A Q62784 A3587 Mm.150420 600916 2q11.2
  IQSEC2 O60275 A2429 Mm.33027 300522 Xp11.22
  LPPR4 O75043 A3640 Mm.140138 607813 1p21.3
  LDHA P06151 A0370 Mm.29324 150000 11p15.4 108
  LDHB P16125 A0369 Mm.9745 150100 12p12.2-p12.1 109
  MAOA P21396 A3672 Mm.21108 309850 Xp11.4-p11.3
  MCCC1 Q99MR8 A3604 Mm.249016 210200 3q27
  MGAD and GAD1 P48318 A0635 Mm.272120 605363 2q31
  MGST3 Q9CPU4 A1948 Mm.218286 604564 1q23
  MIF P34884 Mm.2326 153620 22q11.23
  NEDD4 P46935 A1245 Mm.279923 602278 15q
  NEDD4L Q7Z5F1 Mm.98668 606384 18q21
  NME2 Q01768 Mm.1260 156491 17q21.3
  NPEPPS Q91VJ8 Mm.29824 606793 17q21
  DHRS4 Q9EQU4 A3635 Mm.27427 14q11.2
  OGT O15294 Mm.259191 300255 Xq13
  PADI2 Q08642 Mm.2296 607935 1p35.2-p35.1
  PCCA Q91ZA3 A3601 Mm.23876 232000 13q32
  PFK-C and PFKP Q9WUA3 A1926 Mm.273874 171840 10p15.3-p15.2
  PFK-L P12382 A1925 Mm.269649 171860 21q22.3 110
  PFK-M P47858 A0261 Mm.272582 232800 12q13.3
  PGAM1 Q9DBJ1 Mm.315962 172250 10q25.3 25
  PGAM2 P15259 Mm.219627 261670 7p13-p12.3
  PI3-K P17105 A3612 Mm.65337 147521 15q14-q21 111
  PI4-K O08662 A3658 Hs.529438 600286 22q11.21
  PIGK Q9CXY9 A3622 Mm.331447 605087 1p31.1
  PIP5K2A O70172 Mm.313977 603140 10p12.32
  PIP5K1C O70161 A3591 Mm.29836 606102 19p13.3
  PKLR P53657 A0427 Mm.8359 266200 1q21 112
  POP4 Q9CR08 Mm.22284 606114 19q12
  PPAP2B Q99JY8 A3632 Mm.348326 607125 1pter-p22.1
  PPIA P10111 Mm.5246 123840 7p13 26
  PPIB O88541 Mm.325816 123841 15q21-q22
  PRPS1 Q9D7G0 A3631 Mm.287178 311850 Xq22-q24
  PYCR1 Q922W5 A3657 Mm.127731 179035 17q25.3
  PYGB P53534 A3588 Mm.222584 138550 20p11.2-p11.1
  RNF144 Q925F3 Mm.214932 2p25.1
  RP2 Q9EPK2 A3625 Mm.288141 312600 Xp11.4-p11.21
  RPN1 P07153 A3639 Mm.188544 180470 3q21.3-q25.2
  RPN2 P25235 A3611 Mm.22130 180490 20q12-q13.1
  RRM1 Q91YM8 Mm.197486 180410 11p15.5
  SRR Q9QZX7 Mm.131443 606477 17p13
  TDPX2 P35700 A0371 Mm.30929 176763 9p22 113
  TKT P50137 Mm.290692 606781 3p14.3
  TM7SF2 O76062 A2012 Mm.301370 603414 11q13
  TPI1 P17751 A0433 Mm.4222 190450 12p13 114 27
  TPX and PRDX2 Q61171 A0372 Mm.270130 600538 19p13.2 115
  UBE2V1 Q9CZY3 Mm.278783 602995 20q13.2
  UBLE1A and SAE1 Q9R1T2 A1052 Mm.258530 19q13.32
  UCHL1 Q00981 Mm.29807 191342 4p14
  USP5 P56399 Mm.3571 601447 12p13
 Mitochondrial enzyme(s):
  ACAT1 P17764 A3694 Mm.293233 203750 11q22.3-q23.1 24
  ACO2 Q99KI0 A0429 Mm.154581 100850 22q13.2-q13.31 116 25
  AK1 P39069 Mm.29189 103000 9q34.1 26
  AOP2 and PRDX6 Q9QWW0 A0432 Mm.186185 602316 1q25.1 117 27
  BCKDK O55028 Mm.8903 16p11.2 28
  BDH P29147 A3702 Mm.293470 603063 3q29 29
  CKMT1 P30275 A3690 Mm.252145 123290 15q15 30
  CS Q9CZU6 A3688 Mm.58836 118950 12q13.2-q13.3 31
  CYC1 Q9D0M3 A3698 Mm.29196 123980 8q24.3 32
  DBT P53395 A3675 Mm.3636 248610 1p31 33
  DECR1 Q64591 A3699 Mm.24395 222745 8q21.3 34
  DLAT P08461 A0605 Mm.285076 109720 11q23.1 118 35
  DLD O08749 A3674 Mm.3131 246900 7q31-q32 36
  DLST Q01205 A3682 Mm.296221 126063 14q24.3 37
  DPYSL2 O08553 A0442 Mm.235283 602463 8p21 119 28 38
  ENDOG O08600 A3783 Mm.4449 600440 9q34.1 39
  ETFDH Q9DCT9 A3779 Mm.28336 231675 4q32-q35 40
  GA and GLS2 P28492 A3670 Mm.30102 606365 12q13 41
  GAPDH P16858 A0331 Mm.333399 138400 12p13.31-p13.1 120 42
  GLUD1 P26443 A3680 Mm.10600 138130 10q23.3 43
  GOT2 P05202 A0423 Mm.230169 138150 16q21 121 44
  GPD2 Q64521 A3667 Mm.3711 138430 2q24.1 45
  GPX4 O70325 Mm.332810 138322 19p13.3
  HADHA Q64428 A3683 Mm.200497 600890 2p23 46
  HADHB Q60587 A3684 Mm.291463 143450 2p23 47
  HK1 P17710 A3663 Mm.196605 142600 10q22 48
  IDH2 Q9EQK1 A3660 Mm.2966 147650 15q26.1 49
  IDH3A Q9D6R2 A3629 Mm.279195 601149 15q25.1-q25.2 50
  IDH3B Q91VA7 A3668 Mm.29590 604526 20p13 51
  IDH3G P70404 A3669 Mm.14825 300089 Xq28 52
  ILES and FLJ10326 Q8R2M5 A3780 Mm.331142 1q41 53
  MDH2 P08249 A3696 Mm.297096 154100 7p12.3-q11.2 54
  MTCO2 P00405 A3778 Mitochondrial 516040 Mitochondrial 55
  OGDH Q60597 A3664 Mm.276348 203740 7p14-p13 56
  OGDHL Q9ULD0 A3665 Hs.17860 10q11.23 57
  OMB5 P04166 Mm.20242 16q22.1 58
  PC Q05920 A3662 Mm.1845 266150 11q13.4-q13.5 59
  PDCD8 Q9Z0X1 A3781 Mm.240434 300169 Xq25-q26 60
  PDHA1 P35486 A3685 Mm.34775 312170 Xp22.2-p22.1 61
  PDHB P49432 A3687 Mm.301527 179060 3p21.1-p14.2 62
  SLC25A11 P97700 A3731 Mm.296082 604165 17p13.3 63
  SOD2 P07895 Mm.290876 147460 6q25.3 64
  SUCLA2 Q9Z2I9 A3621 Mm.38951 603921 13q12.2-q13.3 65
  SUCLG1 Q9WUM5 A3697 Mm.29845 2p11.2 66
  UQCRC1 Q9CZ13 A3676 Mm.194811 191328 3p21.3 67
  UQCRC2 P32551 A3677 Mm.334206 191329 16p12 68
Transcription and translation:
 Transcription element(s):
  ATF7IP Q9JK31 A3789 Mm.173271 12p13.1
  ATRX P46100 A2062 Mm.10141 300032 Xq13.1-q21.1
  BAZ1B Q9UIG0 A2168 Mm.40331 605681 7q11.23
  BCAP37 Q61336 A0439 Mm.36241 8q24.3 122
  CYFIP2 Q924D3 A3580 Mm.154358 606323 5q33.3
  FIBP Q9JI19 A3798 Mm.329656 608296 11q13.1
  GCFC and C21orf66 P58501 A0298 Mm.347 21q21.3 123
  HNRPM Q9D0E1 A3792 Mm.371659 160994 19p13.3-p13.2 29
  NFKBIE O54910 A1330 Mm.57043 604548 6p21.1
  NRBF1 and CGI-63 Q99L39 A3794 Mm.192706 608205 1pter-p22.3
  MKL2 and MRTF-B P59759 Mm.270643 16p13.12
  ORC1L Q9Z1N2 A3790 Mm.294154 601902 1p32
  PHB P24142 A3793 Mm.263862 176705 17q21 69
  PURA P42669 A3795 Mm.231802 600473 5q31
  PURB O35295 A3796 Mm.296150 608887 7p13
  SND1 Q9R0S1 A3788 Mm.29827 602181 7q31.3
  SOX7 P40646 A2191 Mm.42162 8p23
  STAT1 Q8C3V4 Mm.277406 600555 2q32.2
  TFAM P40630 A2186 Mm.229292 600438 10q21
  TRIM32 Q8K055 A3799 Mm.22786 602290 9q33.1
  ZFP386 and ZNF571 Q9QZP7 A2922 Mm.254997 19q13.12
 Other nuclear/DNA-binding:
  ACTL6B Q99MR0 Mm.31646 7q22
  ARID3B Q9Z1N7 A2027 Mm.350789 15q24
  BANF1 O54962 Mm.299167 603811 11q13.1
  CPEB3 Q8NE35 Mm.371677 10q23.32
  CSPG6 Q9CW03 A3213 Mm.14910 606062 10q25
  CSRP1 P47875 A1021 Mm.196484 123876 1q32
  FBXO2 Q9Z1X8 A2251 Mm.262287 607112 1p36.22
  FBXO41 Q8TF61 Hs.23158 2p13.2
  H3F3A P06351 A1373 Hs.546259 601128 1q41
  HEL308 Q8TDG4 A2152 Hs.480101 606769 4q21.23
  HIST1H1E P43274 Mm.14101 142220 6p21.3
  HIST1H2AE P28001 Mm.261665 602786 6p22.2-p21.1
  HIST1H4H Q811M0 Mm.227295 142750 6p21.3
  HIST3H2BA Q9D2U9 Mm.28022 601831 1q42.13
  HNRPA3 O70592 A2547 Mm.316306 2q31.2 30
  HNRPH1 O35737 Mm.21740 601035 5q35.3
  HNRPH2 P70333 Mm.315909 601036 Xq22
  JMJD1B Q9NYF4 Mm.277906 5q31
  MLF1 Q9QWV4 Mm.10414 601402 3q25.1
  MMS19L Q969Z1 Mm.218940 10q24-q25
  NAP1L1 P28656 Mm.337558 12q21.2
  NDEL1 Q9EPT6 Mm.31979 607538 17p13.1
  ORC2L Q60862 A3791 Mm.3411 601182 2q33
  PCBP1 P60335 Mm.274146 601209 2p13-p12
  PES1 O00541 Mm.28659 605819 22q12.1
  PSD Q86YI3 Hs.154658 602327 10q24
  REV3 Q61493 Mm.288788 602776 6q21
  SH3BGRL2 Q9UJC5 Hs.302772 6q13-q15
  SNF2L1 and SMARCA1 P28370 A2045 Mm.229151 300012 Xq25
  XRCC1 Q60596 Mm.333661 194360 19q13.2
  ZNF289 Q99K28 Mm.43636 606908 11p11.2-p11.12
  ZNF451 Q9Y4E5 Mm.289103 6p12.1
 Elongation/RNA-binding:
  EEF1A2 P27706 A3801 Mm.2645 602959 20q13.3 31
  EEF1B O70251 A3802 Mm.2718 600655 2q33-q34
  EEF2 P58252 A3804 Mm.289431 130610 19p13.3
  EF1A P10126 A1820 Mm.196614 130590 6q14.1
  EF1G Q9D8N0 A1968 Mm.247762 130593 11q12.3
  EIF3S7 O70194 A3805 Mm.3955 603915 22q13.1
  EIF4A2 P10630 Mm.260084 601102 3q28
  EIF4B Q922K6 A3806 Mm.290022 603928 12q13.13
  EIF4E P20415 A0973 Mm.3941 133440 4q21-q25
  PABPC1 P29341 A2508 Mm.371570 604679 8q22.2-q23
  SFPQ O54725 Mm.257276 605199 1p34.3
 Ribosomal:
  LAMR1 Q8BHL0 Mm.4071 150370 3p21.3 32
  RBP34 and PRO1855 Q63742 A3286 Mm.172720 17q21.33
  RPL3 P27659 Mm.290899 604163 22q13
  RPL4 P50878 A3808 Mm.280083 180479 15q22
  RPL5 P47962 A1222 Mm.4419 603634 1p22.1
  RPL6 P47911 A3810 Mm.262021 603703 12q24.1 33
  RPL7 P14148 A0366 Mm.290772 604166 8q21.11 124 34
  RPL7A P12970 A3811 Mm.725 185640 9q34 35
  RPL8 Q9Z237 A3812 Mm.30066 604177 8q24.3
  RPL9 P51410 Mm.300271 603686 4p13
  RPL10 P45634 Mm.100113 312173 Xq28
  RPL10A P53026 A3813 Mm.336955 6p21.3-p21.2
  RPL11 Q9CXW4 Mm.276856 604175 1p36.1-p35
  RPL12 P23358 Mm.286100 180475 9q34 36
  RPL13 P47963 A0367 Mm.319719 113703 17p11.2 125
  RPL13A P19253 A0368 Mm.180458 19q13.3 126
  RPL14 Q63507 A3814 Mm.289810 3p22-p21.2
  RPL17 Q6ZWZ7 Mm.276337 603661 18q21
  RPL18 P35980 Mm.349277 604179 19q13 37
  RPL19 P14118 Mm.309019 180466 17q11.2-q12
  RPL22 P41104 Mm.307846 180474 1p36.3-p36.2
  RPL23 P23131 Mm.140380 603662 17q11-q21.3
  RPL23A P29316 Mm.244545 602326 17q11
  RPL24 P83731 Mm.282814 604180 3q12
  RPL27 Q9CSM4 Mm.340658 607526 17q21.1-q21.2
  RPL30 P04645 Mm.358632 180467 8q22 38
  RPL31 P12947 Mm.298467 2q11.2
  RPL36 P47964 Mm.11376 19p13.3
  RPL38 P23411 Mm.238817 604182 17q23.q25
  RPLP0 P14869 A3807 Mm.5286 180510 12q24.2
  RPLP1 P47955 Mm.3158 180520 15q22
  RPLP2 P02401 Mm.341719 180530 11p15.5-p15.4
  RPS2 P25444 A3815 Mm.1129 603624 16p13.3
  RPS3 P17073 A3816 Mm.236868 600454 11q13.3-q13.5 39
  RPS3A P97351 A3817 Mm.6957 180478 4q31.2-q31.3
  RPS4X P47961 A3818 Mm.66 312760 Xq13.1
  RPS5 P46782 Mm.5291 603630 19q13.4 40
  RPS6 P10660 Mm.325584 180460 9p21
  RPS7 P23821 Mm.371579 603658 2p25
  RPS8 P09058 A3823 Mm.260904 600357 1p34.1-p32 41
  RPS9 P46781 Mm.13944 603631 19q13.4
  RPS10 P09900 A1668 Mm.275810 603632 6p21.31
  RPS12 P09388 Mm.371846 603660 6q23.2
  RPS13 Q02546 Mm.14798 180476 11p15
  RPS14 P06366 Mm.43778 130620 5q31-q33
  RPS15 P11174 Mm.288212 180535 19p13.3
  RPS16 P17008 Mm.702 603675 19q13.1 42
  RPS17 P06584 Mm.42767 180472 15q
  RPS18 P25232 Mm.371578 180473 6p21.3
  RPS19 Q9CZX8 Mm.300281 603474 19q13.2
  RPS20 Q921M2 Mm.21938 603682 8q12
  RPS21 P35265 Mm.289669 180477 20q13.3
  RPS25 P25111 Mm.292027 180465 11q23.3
  RPS27 P24051 Mm.270283 603702 1q21
  RPS27A P49664 Mm.180003 191343 2p16
  RPS27L AAH58115 Mm.30120 15q22.2
  RPS28 P25112 Mm.200920 603685 19p13.2
Cytoskeletal and cell adhesion:
 Actin/ARP:
  ACTIN O35247 A0091 Mm.196173 102560 17q25.3 127 43
  ACTR2 P53488 A0235 Mm.259045 604221 2p14
  ACTR3 Q99JY9 A0234 Mm.183102 604222 2q14.1 44
  ARPC1A Q9R0Q6 A3287 Mm.34695 604220 7q22.1
  ARPC2 O15144 A0233 Mm.337038 604224 2q36.1 128
  ARPC3 O15145 A0232 Mm.275942 604225 12q24.11 129
  ARPC4 O15509 A0231 Mm.289306 604226 3p25.3 130
  ARP3BETA and ARP11 Q9P1U1 A3339 Mm.150319 7q32-q36
 Tubulin:
  TUBULIN P02551 A0017 Mm.209290 602529 12q12-q14.3 131 6
 Actinin:
  ACTN Q9JI91 A0007 Mm.37638 102573 1q42-q43 132
  ACTN1 Q9Z1P2 A2341 Mm.253564 102575 14q22-q24
  ACTN3 O88990 A2343 Mm.5316 102574 11q13-q14 133
  ACTN4 P57780 A2344 Mm.276042 604638 19q13 134
 Spectrin:
  SPECTRIN Q62261 A0010 Mm.123110 182790 2p21 135
 MAPs:
  MACF1 Q9QXZ0 A2342 Mm.3350 608271 1p32-p31
  MAP1A P34926 A0085 Mm.36501 600178 15q13 35
  MAP1B P14873 A0625 Mm.4173 157129 5q13 36
  MAP4 P27816 A0778 Mm.217318 157132 3p21
  MAPRE2 Q15555 A0654 Mm.132237 605789 18q12-q21
  MAPT P10638 A0135 Mm.1287 157140 17q21.1
  MTAP2 P20357 A0134 Mm.256966 157130 2q34-q35 136 37
  MTAP6 O55129 A3376 Mm.154087 601783 11q13.3
 Catenins:
  CATNA Q61301 A1914 Mm.34637 114025 2p12-p11.1
  CATNB Q02248 A0112 Mm.291928 116806 3p22-p21.3 137
  CTNNA1 P26231 A0089 Mm.18962 116805 5q31
  CTNND1 P30999 A0218 Mm.35738 601045 11q11
  CTNND2 O35927 A0469 Mm.321648 604275 5p15.2
 Myelin:
  GPM6A P35802 A3425 Mm.241700 601275 4q34 45
  MBP P04370 A0350 Mm.252063 159430 18q22 138 46
  MOG Q61885 A0351 Mm.210857 159465 6p21.3 139
  OMG Q63912 A3590 Mm.93335 164345 17q11.2
  PLP1 Q62079 A0352 Mm.1268 300401 Xq22 140 7
 Cell-recognition molecules:
  NFASC P97685 A0663 Mm.326702 1q32.1
  SDFR1 P97547 A3607 Mm.15125 15q22 47
  TENASCIN-C Q62701 A1525 Mm.980 187380 9q33
  TENASCIN-R Q05546 A1074 Mm.337795 601995 1q24
 Keratins:
  2410039E07RIK and KRT14 Q9CWC9 A3741 Mm.158190 17q12-q21
  FLJ20261 and KRT24 Q9CV17 A3825 Mm.46378 607742 17q11.2
  KRT5 Q920F2 A1669 Mm.22657 148040 12q12-q13
  KRT6A Q9Z332 A3846 Mm.302399 148041 12q12-q13
 Other cytoskeletal:
  ABLIM1 Q9EPW6 A3976 Mm.217161 602330 10q25 141
  ABLIM2 Q80WK6 Mm.254446 4p16-p15
  ACTR1A P42024 A0660 Mm.3118 605143 10q24.32 48
  ADAM11 Q9R1V4 A3880 Mm.89854 155120 17q21.3
  ADAM22 Q9R1V6 A0373 Mm.125477 603709 7q21 142
  ADAM23 Q9R1V7 A3881 Mm.124892 603710 2q33
  ADD1 Q9QYC0 A3876 Mm.289106 102680 4p16.3 38
  ADD2 Q9QYB8 A0587 Mm.104155 102681 2p14-p13 39
  ADD3 Q9QYB5 A3877 Mm.44106 601568 10q24.2-q24.3
  ANK1 Q02357 A0662 Mm.334444 182900 8p11.1
  ANK2 Q01484 A3873 Mm.220242 106410 4q25-q27
  ANK3 Q61307 A3874 Mm.235960 600465 10q21
  ASB7 Q91ZU0 Mm.34785 15q26.3
  BASSOON O88737 A0285 Mm.20425 604020 3p21.31 143 40
  CAPZ ALPHA-1 P47753 Mm.19142 601580 1p13.2
  CAPZ ALPHA-2 P47754 A0417 Mm.262039 601571 7q31.2-q31.3 144
  CAPZ BETA P47757 A0418 Mm.2945 601572 1p36.1 145
  CAST O15083 A3879 Mm.318004 3p14.3
  CTTNBP2 Q8BVG1 Mm.224189 7q31.2
  CFL1 P45592 A0999 Mm.4024 601442 11q13
  CKAP4 Q8R3F2 A3211 Mm.334999 12q23.3
  CLMN Q8C5W0 A3870 Mm.244078 14q32.13
  CORO1A O89053 A2143 Mm.290482 605000 16p11.2
  CORO1B O89046 A2141 Mm.276859 11q13.2
  CORO1C Q8VCQ5 A2142 Mm.260158 605269 12q24.11
  CORO2B Q9UQ03 A2139 Mm.335229 605002 15q23
  CORTACTIN and EMS1 Q60598 A0083 Mm.205601 164765 11q13 146
  CORTBP-1 and SHANK2 Q9QX74 A0081 Mm.323725 603290 11q13.3-q13.4 147
  CRTAC1 Q8R555 A3975 Mm.329851 606276 10q22
  CSE1L Q9UP98 A0446 Mm.22417 601342 20q13 148
  DBN1 Q9QXS6 A0438 Mm.19016 126660 5q35.3 149
  DES P48675 A0535 Mm.6712 125660 2q35
  DESMOGLEIN Q61495 A0291 Mm.37953 125670 18q12.1-q12.2 150
  DMD P11531 A0462 Mm.275608 310200 Xp21.2
  EB2 Q61167 A0654 Mm.57874 605789 18q12-q21
  EEA1 Q15075 A2330 Mm.210035 605070 12q22
  ELKS Q99MI2 A3878 Mm.288860 607127 12p13.3
  EPB4.1L3 Q9JMB3 A3865 Mm.131135 605331 18p11.3
  EPB41L1 Q9Z2H5 A3867 Mm.20852 602879 20q11.2-q12
  EPB4.9 Q8JZV5 Mm.210863 125305 8p21.1
  EZRIN P26040 A0326 Mm.277812 123900 6q25-q26
  FILAMIN Q9JJ38 A0204 Mm.39046 300017 Xq28 151
  FLJ90835 Q96ID5 A3979 Hs.212511 1p36.13
  FSCN1 Q61553 A0224 Mm.289707 602689 7p22
  GELSOLIN P13020 A0419 Mm.21109 137350 9q33 152
  INTERNEXIN P46660 A0292 Mm.276251 605338 10q24.33 153
  ITGAX Q9QYE7 A1687 Rn.34728 151510 16p11.2
  JUP P70565 A0324 Mm.299774 173325 17q21
  KIAA0097 Q14008 A4009 Mm.168478 11p11.2
  KIDINS220 Q9ERD4 A3875 Mm.250641 2p24
  LASP1 Q61792 A3882 Mm.271967 602920 17q11-q21.3
  LMNA P48679 A1374 Mm.243014 150330 1q21.2-q21.3
  LMNB1 P14733 A0430 Mm.4105 150340 5q23.3-q31.1 154
  LYRIC Q9D052 A3991 Mm.130883 8q22.1
  LZTS1 P60853 Mm.334576 606551 8p22
  NCKIPSD Q9ESJ4 A1027 Mm.192416 606671 3p21
  NF-H O35482 A0374 Mm.298283 162230 22q12.2
  NF-L P08551 A0375 Mm.1956 162280 8p21 155
  NF-M P08553 A0376 Mm.242832 162250 8p21 156
  NG5 and C6orf31 O35449 A3989 Mm.358936 6p21.32
  PAFAH1B1 P63005 A2074 Mm.56337 601545 17p13.3
  PALM Q9Z0P4 A3883 Mm.34650 608134 19p13.3
  PCDH16 Q96JQ0 Mm.334108 603057 11p15.4
  PCDHB13 Q91Y06 Mm.196700 606332 5q31
  PKP4 Q99569 Mm.260938 604276 2q23-q31
  PLECTIN P30427 A1941 Mm.234912 601282 8q24
  PPFIA2 O75334 Mm.252890 603343 12q21.31
  PPFIA3 O75145 A3869 Mm.277235 603144 19q13.33
  PPFIA4 Q91Z80 Mm.295105 603145 1q32.1
  PFN2 Q9JJV2 Mm.271744 176590 3q25.1-q25.2
  SLMAP Q28623 A0216 Mm.36769 602701 3p21.2-p14.3 157
  SSH3BP1 O76049 Mm.205647 603050 10p11.2
  SYNPO Q9Z327 A3871 Mm.252321 5q33.1 41
  TAGLN3 P37805 Mm.24183 607953 3q13.2
  TMOD1 P70567 Mm.249594 190930 9q22.3
  THY1 P01831 A1218 Mm.3951 188230 11q22.3-q23 49
  WASF1 Q9ERQ9 A0148 Mm.41353 605035 6q21.q22
  WBP3 Q9NSL0 A3872 Mm.29043 12q13.12
 Other cell-adhesion molecules:
  AF6 O35889 A0101 Mm.181959 159559 6q27
  AGC1 Q61282 Mm.358571 155760 15q26.1 42
  APOJ Q06890 A1276 Mm.200608 185430 8p21-p12
  ARVCF P98203 Mm.293599 602269 22q11.21
  ASTN Q61137 A3896 Mm.329586 600904 1q25.2
  ASTN2 Q9UHW6 A3897 Mm.370225 9q33.1
  CASPR O54991 A0758 Mm.8021 602346 17q21
  CDH10 Q9Y6N8 Mm.234715 604555 5p14-p13
  CDH13 Q9WTR5 Mm.334841 601364 16q24.2-q24.3
  CONNEXIN-43 P23242 A0493 Mm.370184 121014 6q21-q23.2
  CONTACTIN-1 P12960 A0757 Mm.4911 600016 12q11-q12
  CONTACTIN-2 Q61330 A1073 Mm.260861 190197 1q32.1
  CRTL1 Q9QUP5 A3893 Mm.266790 115435 5q13-q14.1
  CSPG3 P55066 A3892 Mm.268079 600826 19p12
  CSPG5 Q9QY32 A3895 Mm.38496 606775 3p21.3
  DENSIN-180 P70587 A0150 Mm.132162 1p31.1
  DESMOPLAKIN P15924 A0454 Mm.355327 125647 6p24 8
  BPAG1 Q91ZU6 A1575 Mm.336625 6p12-p11
  ERBB2IP Q9NR18 A0507 Mm.277354 606944 5q12.3
  GJB6 P70689 Mm.25652 604418 13q12
  HAPLN2 Q9ESM3 Mm.294467 1q23.1
  HNT Q62718 A3887 Mm.283138 607938 11q25
  NEGR1 Q9Z0J8 A3888 Mm.317293 1p31.1
  L1CAM P11627 A0290 Mm.260568 308840 Xq28 158 43
  LGI1 Q9JIA1 A0440 Mm.298251 604619 10q24 159
  LIN7A Q9Z251 A0141 Mm.268025 603380 12q21 160
  LIN7B Q9Z252 A3899 Mm.20472 19q13.3
  MAG P20917 A3898 Mm.241355 159460 19q13.1
  N-CADHERIN P15116 A0219 Mm.257437 114020 18q11.2 161
  NCAM1 P13595 A3884 Mm.4974 116930 11q23.1
  NCAM2 O35136 A3885 Mm.258759 602040 21q21
  NEO1 P97798 A3894 Mm.42249 601907 15q22.3-q23
  NLGN Q62765 A0129 Mm.316080 600568 3q26.31
  NLGN2 Q62888 A3889 Mm.151293 606479 17p13.1
  NLGN3 Q62889 A3890 Mm.121508 300336 Xq13.1
  NORBIN Q9Z0E0 A1163 Mm.276466 608458 1p34.3
  NRXN1 Q9ULB1 A0130 Mm.329258 600565 2p16.3
  NRXN3 Q07314 A3891 Mm.291005 600567 14q31
  OPCML P32736 A3886 Mm.39634 600632 11q25
  TSC1 Q9EP53 Mm.224354 605284 9q34
Synaptic vesicles/protein transport:
 Clathrin:
  CLTA P08081 A0122 Mm.298875 118960 9p13 50
  CLTB P08082 A3901 Mm.290026 118970 5q35 51
  CLTC P11442 A0119 Mm.254588 118955 17q11-qter 162 44 52
 Synaptic vesicle:
  AMPH O08838 A0121 Mm.101650 600418 7p14-p13
  AMPHIPHYSIN2 O08839 A1109 Mm.4383 601248 2q14
  ANXA1 P10107 A0647 Mm.248360 151690 9q11-q22
  AP180 Q61548 A0684 Mm.281651 607923 6q14.2
  AP1B1 P52303 A0686 Mm.274816 600157 22q12.2
  AP2A1 P17426 A0251 Mm.6877 601026 19q13.33 53
  AP2A2 P17427 A0252 Mm.253090 607242 11p15.5 54
  AP2B1 Q9DBG3 A0253 Mm.39053 601025 17q11.2-q12 45 55
  AP2M1 P20172 A0254 Mm.18946 601024 3q28 56
  AP2S1 Q00380 A0255 Mm.333597 602242 19q13.2-q13.3 57
  AP3B2 Q9JME5 Mm.322894 602166 15q25.2
  AP3D1 O54774 A1324 Mm.209294 607246 19p13.3
  AP3M2 P53678 A3907 Mm.10647 8p11.2
  CALNEXIN P35564 A0452 Mm.248827 114217 5q35
  COPA P53621 A2102 Mm.30041 601924 1q23-q25
  COPB2 O55029 A0237 Mm.261735 606990 3q23
  CYLN2 Q9EP81 A2346 Mm.255138 603432 7q11.23
  E-FABP Q01469 A0441 Mm.741 605168 8q21.13 163
  EHD3 Q9QXY6 A1331 Mm.18526 605891 2p21
  EPN2 Q9Z1Z3 A3926 Mm.139695 607263 17p11.2
  EXO70 O54922 A3921 Mm.22530 608163 17q25.1
  EXO84 O54924 A3923 Mm.347360 1q42.2
  GBAS O55126 A3913 Mm.12468 603004 7p12 70
  GOSR1 O88630 A3936 Mm.20931 604026 17q11
  HIP1R Q9JKY5 A3906 Mm.149954 605613 12q24 58
  ICA1 P97411 A2211 Mm.275683 147625 7p22
  KTN1 Q61595 A3531 Mm.296457 600381 14q22.1
  MOSC2 O88994 A4008 Mm.177724 1q41 71
  MOB3 Q9Y3A3 A3935 Mm.291037 1q33.1
  NAPA P54921 A0596 Mm.104540 603215 19q13.3 59
  NAPB P28663 A3910 Mm.274308 162100 17q25 60
  NAPG Q9CWZ7 A3911 Mm.292687 603216 18p11.22
  NIPSNAP1 O55125 A3914 Mm.293716 603249 22q12 72
  NPTX1 Q62443 A1697 Mm.5142 602367 17q25.1-q25.2
  NSF P46460 A0117 Mm.260117 601633 17q21.q22 164 46 61
  PACSIN1 Q9Z0W5 A0501 Mm.4926 606512 6p21
  PICALM O55011 A3927 Mm.235175 603025 11q14
  PXR2 Q9JMB9 A3932 Mm.151332 3q26.33
  RIMBP2 Q80U40 Mm.233996 17q22-q23
  RIM1 Q99NE5 A0035 Mm.328661 606629 6q12-q13
  RIMS2 Q9EQZ7 A1861 Mm.309296 606630 8q22.3
  RIP11 Q8R361 Mm.220334 605536 2p13-p12
  RPH3A P47708 A0212 Mm.181166 12q24.13 47
  SCFD1 Q62991 A3928 Mm.216511 14q12
  SEC10L1 P97878 A3925 Mm.31607 604469 14q22.3
  SEC15L2 Q9D4R7 A3924 Mm.159621 607880 2p13.2
  SEC5L1 Q9D4H1 A3920 Mm.293510 6p25.3
  SEC6L1 Q62825 A3922 Mm.261859 608186 5p15.33
  SIP30 Q8VIL3 Rn.7624 10q21-q22
  SNAP25 P70558 A0333 Mm.45953 600322 20p12.p11.2 165 62
  SNIP Q9QXY3 A3903 Mm.342665 17q12 48
  SNX3 O60493 Mm.277870 605930 6q21
  S-REX and RTN1 Q64548 A0445 Mm.221275 600865 14q21-q22 166
  STX Q9QXG3 A0040 Mm.6225 186590 16p11.2 167
  STX1B2 P61264 Mm.40343 16p12.p11
  STX7 O70439 A3940 Mm.248042 603217 6q23.1
  SYTL2 Q99JB2 A3942 Mm.26751 11q14
  STX12 Q9ER00 A3939 Mm.28237 606892 1p35-p34.1 63
  STXBP1 O08599 A0238 Mm.278865 602926 9q34.1 168 9 64 73
  SV2 Q02563 A3902 Mm.200365 185860 1q21.2
  SYCP1 Q15431 A3863 Mm.243849 602162 1p13-p12
  SYN1 O88935 A0161 Mm.370211 313440 Xp11.23
  SYN2 Q9QWV7 A3904 Mm.275845 600755 3p25
  SYN3 Q9QZA3 Mm.131564 602705 22q12.3
  SYNAPTOGYRIN O55100 A0288 Mm.230301 603925 22q13 169 49
  SYNGR3 Q9WVG8 A3933 Mm.26032 603927 16pter 65
  SYNJ1 Q62910 A0120 Mm.187079 604297 21q22.2 50
  SYP Q62277 A3941 Mm.223674 313475 Xp11.23-p11.22 66
  SYT1 P46096 A0039 Mm.289702 185605 12cen-q21 170 67
  SYT7 Q9R0N7 A3905 Mm.182654 604146 11q13
  TJP4 Q9DCD5 A4027 Mm.284594 6p21.1
  TOMOSYN Q9Z152 A0562 Mm.286868 604586 6q24.3
  TRIM9 Q91ZY8 Mm.184012 14q22.1
  TRIM37 Q8IYF7 Mm.17436 605073 17q23.2
  UNC13A Q62768 A0560 Mm.334606 19p13.11
  UNC13C Q8K0T7 Mm.41035 15q21.3
  VAMP2 P63044 Mm.28643 185881 17p13.1 51 68
  VAPA Q9Z270 A3937 Mm.266767 605703 18p11.22 69
  VAPB Q9QY76 A3938 Mm.260456 605704 20q13
  VCP Q01853 A3918 Mm.262053 601023 9p13-p12
  VPS16 Q920Q4 A3908 Mm.276092 608550 20p13-p12
  VPS28 Q8BMZ7 Mm.30028 8q24.3
  VPS29 Q9QZ88 Mm.216528 606932 12q24
  VPS33A Q63615 A3930 Mm.41372 12q24.31
  VPS35 Q61123 A3909 Mm.296520 606931 16q12 70
  VPS41 Q9H348 A1326 Mm.27389 605485 7p14-p13
  VPS45A P97390 A3929 Mm.263185 1q21-q22
  VTI1L O88384 A3934 Mm.265929 603207 14q24.1
 Transporters:
  ABCB1B P06795 Mm.146649 7q21.1
  ABCB8 Q9CXJ4 A3947 Mm.283914 605464 7q36 74
  ABCD3 P55096 A3946 Mm.194462 170995 1p22-p21
  MTCH1 Q9QZP4 A3948 Mm.285322 6per-p24.1 75
  MTCH2 Q99LZ6 A3949 Mm.28023 11p11.2 76
  MTX1 P47802 A3956 Mm.280943 600605 1q21 77
  MTX2 O88441 A3957 Mm.292613 608555 2q31.1 78
  SEC22L1 O08547 Mm.2551 604029 1q21.2-q21.3
  SEC23A Q01405 A3945 Mm.209207 14q21.1
  SFXN1 Q63965 A3951 Mm.134191 5q35.1 79
  SFXN3 Q9JHY2 A3952 Mm.36169 10q24.32 80
  SFXN5 Q925N0 A3954 Mm.121485 2p14-p13 81
  SLC25A1 P32089 A3750 Mm.229291 190315 22q11.21 82
  SLC25A3 P16036 A3776 Mm.298 600370 12q23 83
  SLC25A4 P48962 A0395 Mm.16228 103220 4q35 171 84
  SLC25A5 Q09073 A0396 Mm.658 300150 Xq24-q26 172 85
  SLC25A12 O75746 A0443 Mm.30928 603667 2q24 173 86
  SLC25A13 Q9QXX4 A3747 Mm.24513 603859 7q21.3 87
  SLC25A22 Q9H936 A3773 Mm.33729 11p15.5 174 88
  SLC30A3 P97441 A3943 Mm.1396 602878 2p23.3
  TOMM70A Q9CZW5 A3950 Mm.213292 606081 3q12.2 89
  VPS26 P40336 A3944 Mm.260703 605506 10q21.1
 Motor:
  BERP Q9R1R2 A1178 Mm.29290 605493 11p15.5
  CLASP2 Q99JI3 A3970 Mm.222272 605853 3p23
  DCTN2 Q99KJ8 A0656 Mm.167537 607376 12q13.2-q13.3
  DCTN4 Q9QUR2 A3969 Mm.272801 5q31-q32
  DLC2 Q9D0M5 Mm.246436 608942 13q12-q13
  DNCH1 P38650 A0133 Mm.181430 600112 14q32
  DNCLC1 Q15701 A0514 Mm.256858 601562 14q24
  DNCLIC1 Q8R1Q8 Mm.128627 3p23
  DOC2A P70611 A0561 Mm.266301 604567 16p11.2
  DNCI1 O88485 A0661 Mm.20893 603772 7q21.3-q22.1
  DNCI2 O88487 A2127 Mm.249479 603331 2q31.1
  GABARAPL2 P60521 Mm.371666 607452 16q22.3-q24.1
  GAS7 Q60780 Mm.40338 603127 17p13.1
  IMMT Q9D9F6 A3973 Mm.235123 600378 2p11.2 90
  INTERSECTIN-1 Q9Z0R4 A0571 Mm.40546 602442 21q22.1-q22.2
  KIFAP3 P70188 Mm.4651 601836 1q24.2
  KIF2 P28740 A3966 Mm.355686 602591 5q12-q13
  KIF5B Q61768 A3967 Mm.223744 602809 10p11.22
  KIF5C P28738 Mm.256342 604593 2q23.1
  KLC2 O88448 A3968 Mm.271648 11q13.2 175
  MRLC2 Q63781 A4048 Mm.306770 18p11.31 176
  MYL4 P09541 Mm.247636 160770 17q21
  MYL6 Q60605 A4049 Mm.337074 12q13.2 177
  MYL6 P16475 A4049 Mm.337074
  MYH7 O61355 A3202 Mm.290003 160760 14q12 178
  MYO18A Q9JMH9 A3964 Mm.341248 17q11.2
  MYH9 Q8VDD5 A3166 Mm.29677 160775 22q11.2 179
  MYH10 Q9JLT0 A3961 Mm.218233 160776 17p13 180
  MYH11 O08638 A2331 Mm.250705 160745 16p13.13-p13.12 181
  MYH14 Q9H882 A3962 Mm.358743 608568 19q13.33
  MYO1B P46735 A3958 Mm.3390 606537 2q12-q34 182
  MYO1D Q63357 A3959 Mm.151948 606539 17q11-q12
  MYO5C Q9NQX4 Mm.41339 15q21
  MYO6 Q64331 A3960 Mm.4040 600970 6q13
  MYO7B Q99MZ6 Mm.312342 606541 2q21.1
  MYOSIN (V) Q9QYF3 A0149 Mm.3645 160777 15q21 183
  OPA1 O60313 A3971 Mm.274285 605290 3q28-q29 91
  P150GLUED O08788 A0658 Mm.6919 601143 2p13
  PRPH1 P21807 A0459 Mm.2477 170710 12q12-q13
  RESTIN P30622 A2345 Mm.241109 179838 12q24.31-q24.33
  SYT2 P46097 Mm.5102 600104 1q32.1 71
  SYT3 O35681 Mm.4824 600327 19q13.33
  SYT5 Q9R0N5 Mm.358663 600782 19q13.4
  TMOD2 P70566 A3972 Mm.291880 602928 15q21.1-q21.2
  TPM1 Q63608 A3965 Mm.121878 191010 15q22.1
  TPM2 P58774 Mm.646 190990 9p13.2-p13.1
  TPM3 P21107 A3205 Mm.240839 191030 1q21.2
  VIM P31000 A0850 Mm.268000 193060 10p13
Uncharacterized/novel:
 0610008C08Rik and MGC4825 Q9DCZ4 Mm.371632 Xp22.11
 0610011D08RIK and UMP-CMPK Q8VD05 Mm.294159 1p32
 0710001P09RIK and CHCHD6 Q9D5I5 A3994 Mm.20313 3q21.2 92
 1110031B06Rik Q8R570 Mm.26680 ND
 1200002G13RIK and TMED3 Q9D8Y6 Mm.27606 15q24-q25
 1200007O21RIK and LASP1 Q8BJY6 Mm.120298 17q21
 1200014J11RIK and ELG Q8BMB1 Mm.41903 17p13.2
 1500001H12RIK Q9JKC6 Mm.87027
 1500005I02RIK Q9DB72 Mm.38347
 1500041B16RIK Q9CW19 Mm.200385
 1700054N08RIK Q8QZT2 A3996 Mm.157746
 1810009A16RIK Q8WV67 Mm.318691
 1810009B06Rik Q9D935 Mm.71682
 1810073M12Rik Q80TP4 Mm.285968
 2210417O06RIK Q9CR38 Mm.96211
 2310035C23Rik Q8C9Z0 Mm.337339
 2310046N15RIK Q8K1A7 Mm.24829
 2310057H16RIK Q922F4 Mm.181860
 2610039E05Rik Q8BNN1 Mm.41459
 2610205H19Rik Q9D023 Mm.195625
 2610528A17RIK Q9CZU2 A3995 Mm.61682
 4833411B01RIK Q9Z2D2 A3510 Mm.102970
 4930542G03Rik Q9CVR0 Mm.227260 602660
 4932414J0 Q8C0R4 Mm.72926
 5330440H13Rik Q8BUY8 Mm.271980
 5730453H04Rik Q8BP77 Mm.355327
 5730469M10Rik Q9CYH2 Mm.27227
 5730538E15Rik Q80T83 Mm.274493
 6330415M09Rik Q8BX25 Mm.44490
 6430514L14Rik Q8BQV1 Mm.44355
 6720451F06Rik Q80Y24 Mm.248820 608501
 A330102H22RIK Q9D217 A4003 Mm.257354
 A930041I02Rik Q8C409 Mm.204836
 APG16L Q9DB63 A2084 Mm.272972 2q37.1 184
 AVPI1 Q8VDA6 Mm.30060 10q24.2
 AZI2 Q7TQI5 Mm.92705 3p24.1
 BA342L8.1 Q9D5J9 A4015 Mm.199698 185
 BCAS1 Q8K4U9 Mm.240850 602968
 C6ORF103 Q9HAA5 Hs.486708
 CBLN1 Q80W16 Mm.4880
 CIB Q8VCR7 Mm.335427
 D10ERTD214E Q9D172 Mm.268691 601659
 D430041B17 Q8C3Q5 Mm.347599
 D430041D05Rik Q8BXF0 Mm.291609 ND
 D630045J12Rik Q8C3K4 Mm.35077 ND
 D6ERTD349E Q8C8Q0 Mm.196943 3p25.2
 DJ403A15.3 Q9CU45 A3800 Mm.248687 6q22.33
 DKFZP434N1235 Q9H0C2 A3744 Mm.78691 4q28.1 93
 DKFZP564A026 Q8K2R1 A0281 Mm.23044 ND 186
 DKFZP564D166 Q9NXY9 Hs.410889 17q23.3
 DKFZP761D221 Q8VD37 A3987 Mm.238094 1p31.2
 DOCK7 Q8R1A4 A3986 Mm.260623 1p31.3
 FLJ20420 Q9CRB9 A3558 Mm.21501 7q32.3-q33
 G2 Q12914 A4002 Hs.502266 11p13
 GRCC10 O35127 Mm.3172 12p13.31
 HSPC117 Q9Y3I0 Mm.9257 22q12
 HUCEP-10 and FLJ10579 Q96TC7 A3511 Mm.330492 15q15.1
 HCMOGT1 Q9HCQ3 A2325 Mm.37803 608793 17p11.2
 Hypothetical protein Q95KE9
 IGSF8 Q8R0L7 Mm.271717 606644 1q23.1
 KIAA0090 Q14700 A4000 Mm.271956 1p36.13
 KIAA0103 Q9CRD2 A3977 Mm.244512 607722 8q23.1
 KIAA0143 Q922I2 A4006 Mm.260647 8q24.22
 KIAA0233 Q92508 Mm.37324 16q24.3
 KIAA0284 Q80U49 Mm.23689 14q32.33
 KIAA0555 O60302 A3912 Mm.134602 5q32
 KIAA0672 Q8C090 Mm.134338 17p12
 KIAA0953 Q9Y2G0 A4035 Mm.210266 2p23.3
 KIAA1110 Q80TJ8 Mm.299442 20q13.33
 KIAA1136 Q9ULT3 A3992 Mm.166647 10p12.1
 KIAA1170 Q9ULQ0 A3983 Mm.56097 7q32.3
 KIAA1217 Q9ULK3 Hs.445885 10p12.31
 KIAA1463 Q96IB4 Hs.505516 12q13.12
 KIAA1549 Q9HCM3 A3554 Hs.490294 7q34
 KIAA1733 Q9C0D0 Mm.160124 6p24.1
 KIAA1811 Q8TDC3 Hs.443752 19q13.4
 KIAA1906 Q96PY1 Mm.296626 12q24.31
 LANCL2 Q9JJK2 A3988 Mm.274904 7q31.1-q31.33
 LETM1 Q9Z2I0 A4004 Mm.260538 604407 4p16.3 94
 LOC90550 Q8NE86 A4023 Mm.69732 10q22.1
 LRPPRC Q8K4V0 A3999 Mm.217027 2p21
 MAGEF1 Q9HAY2 Hs.306123 3q13
 MGC10772 Q8TB68 Hs.130316 5q35.3
 MGC3038 Q9D898 A3290 Mm.38155 9q33.3
 MIC1 O35606 A4045 Mm.196596 18q11.2
 MINA Q8IUF7 Mm.289150 3q11.2
 MLF2 Q99KX1 Mm.29737 601401 12p13
 MP68 P56379 Mm.318 14q32.33
 SMT3H2 P55855 Mm.29923 603042 17q25.1
 NEBL Q8N8M3 Hs.5025 605491 10p12
 OLFM2 O95897 Hs.169743 19p13.2
 PDLIM7 Q9CRA1 Mm.275648 605903 5q35.3
 PEPP3 Q7TQG1 Mm.253559 607771 1q32.1
 PMCH P14200 Mm.179378 176795 12q23.q24
 PTD004 Q9NTK5 Mm.22661 2q31.1
 SIPA1L1 Q9UNU4 Mm.261333 14q24.2
 STC1 P52823 Mm.20911 601185 8p21-p11.2
 SVH Q9CUN3 A3993 Mm.260782 7q22.1
 SYNE1 Q63128 Mm.157716 6q25
 TEX9 O54764 Mm.14485 15q21.3
 TIGA1 Q96Q82 Hs.12082 5q21-q22
 TMEM33 Q9CR67 Mm.23217 4p13
 TPD52L1 Q16890 Mm.7821 604069 6q22-q23
 TPT1 P14701 Mm.296922 600763 13q12-q14
 TTC7B Q86TV6 Mm.295441 14q32.12
 TTYH1 Q9EQN7 A3997 Mm.29729 605784 19q13.4
 USMG5 Q9ER48 Mm.29722 10q24.33
 WDR1 Q80ZI9 Mm.2654 604734 4p16.1
 WDR37 Q8CBE3 Mm.284654 10p15.3
 WDR7 Q920I9 A4010 Mm.30850 18q21.22
Other cell origin:
  ANXA5 P08758 Mm.1620 131230 72
  CLDN11 Q60771 A1892 Mm.4425
  EDN2 P23943 Mm.284855
  EPPK1 P58107 Mm.259929
  FGB P14480 A1493 Mm.30063
  FGG P02680 A1494 Mm.16422
  GFAP P47819 A0534 Mm.1239 137780
  GMFB Q9ERL8 Mm.87312
  HBA1 P01946 A1741 Mm.196110
  HBB P02091 A1742 Mm.288567 73
  PLAT P19637 A1496 Mm.154660 173370

ND = not determined.

a

The proteins have been classified into families and subfamilies, according to their function.

b

The respective human chromosomal locations are indicated according to the Ensembl database.

c

The counts of components in the NRC/MASC, AMPA, and mGluR receptor complexes are indicated.

d

For details on clathrin vesicles and mitochondria proteomic data, see the work of Collins et al.11

Web Resources

The URLs for data presented herein are as follows:

  1. G2C, http://www.genes2cognition.org/db.html
  2. MartView software, http://www.ensembl.org/Multi/martview/
  3. Mouse Genome Informatics, http://www.informatics.jax.org/
  4. Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.nlm.nih.gov/Omim/ (for PLP1, FLNA, L1CAM, NLGN3, NLGN4, CDKL5, RPS6KA3, DLG3, RPS6KA3, PLP1, L1CAM, SLC25A5, Shank1, Shank3, Magi-1, Grip1, GRIA3, IL1RAPL1, HADH2, MAOA, PRPS1, GDI1, ARHGEF9, RPL10, OPHN1, PAK3, FGD1, ARHGEF6, AP1S2, MECP2, BDNF, CACNA1C, KCNMA1, PAK2, DLG1, MAPT, genes in , and proteins in )
  5. PPID (Protein-Protein Interactions Database), http://defiant.inf.ed.ac.uk:8000/
  6. Swiss Prot database, http://www.ebi.ac.uk/swissprot/access.html#srs
  7. UniGene, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene

References

  • 1.Waites CL, Craig AM, Garner CC (2005) Mechanisms of vertebrate synaptogenesis. Annu Rev Neurosci 28:251–274 10.1146/annurev.neuro.27.070203.144336 [DOI] [PubMed] [Google Scholar]
  • 2.Akins MR, Biederer T (2006) Cell-cell interactions in synaptogenesis. Curr Opin Neurobiol 16:83–89 10.1016/j.conb.2006.01.009 [DOI] [PubMed] [Google Scholar]
  • 3.Scheiffele P (2003) Cell-cell signalling during synapse formation in the CNS. Annu Rev Neurosci 26:485–508 10.1146/annurev.neuro.26.043002.094940 [DOI] [PubMed] [Google Scholar]
  • 4.Craig AM, Graf ER, Linhoff MW (2006) How to build a synapse: clues from cell culture. Trends Neurosci 29:8–20 10.1016/j.tins.2005.11.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Ziv NE, Garner CC (2001) Principles of glutamatergic synapse formation: seeing the forest for the trees. Curr Opin Neurobiol 11:536–543 10.1016/S0959-4388(00)00246-4 [DOI] [PubMed] [Google Scholar]
  • 6.McGee AW, Bredt DS (2003) Assembly and plasticity of the glutamatergic postsynaptic specialization. Curr Opin Neurobiol 13:111–118 10.1016/S0959-4388(03)00008-4 [DOI] [PubMed] [Google Scholar]
  • 7.Ottersen OP, Landsend AS (1997) Organization of glutamate receptors at the synapse. Eur J Neurosci 9:2219–2224 10.1111/j.1460-9568.1997.tb01640.x [DOI] [PubMed] [Google Scholar]
  • 8.Nakanishi S, Nakajima Y, Masu M, Ueda Y, Nakahara K, Watanabe D, Yamaguchi S, Kawabata S, Okada M (1998) Glutamate receptors: brain function and signal transduction. Brain Res Brain Res Rev 26:230–235 10.1016/S0165-0173(97)00033-7 [DOI] [PubMed] [Google Scholar]
  • 9.Grant SG (2006) The synapse proteome and phosphoproteome: a new paradigm for synapse biology. Biochem Soc Trans 34:59–63 10.1042/BST0340059 [DOI] [PubMed] [Google Scholar]
  • 10.Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG (2000) Proteomic analysis of NMDA receptor-adhesion protein signalling complexes. Nat Neurosci 3:661–669 10.1038/76615 [DOI] [PubMed] [Google Scholar]
  • 11.Collins MO, Yu L, Coba MP, Husi H, Campuzano I, Blackstock WP, Choudhary JS, Grant SG (2005) Proteomic analysis of in vivo phosphorylated synaptic proteins. J Biol Chem 280:5972–5982 10.1074/jbc.M411220200 [DOI] [PubMed] [Google Scholar]
  • 12.Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038 10.1126/science.1067020 [DOI] [PubMed] [Google Scholar]
  • 13.Grant SGN, Husi H, Choudhary J, Cumiskey M, Blackstock W, Armstrong JD (2004) The organization and integrative function of the post-synaptic proteome. In: Hensch TK, Fagiolini M (eds) Excitatory-inhibitory balance: synapses, circuits, systems. Kluwer Academic/Plenum Publishers, New York, pp 13–44 [Google Scholar]
  • 14.Kemp JA, McKernan RM (2002) NMDA receptor pathways as drug targets. Nat Neurosci 5:1039–1042 10.1038/nn936 [DOI] [PubMed] [Google Scholar]
  • 15.Robbins TW, Murphy ER (2006) Behavioural pharmacology: 40+ years of progress, with a focus on glutamate receptors and cognition. Trends Pharmacol Sci 27:141–148 10.1016/j.tips.2006.01.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27:370–377 10.1016/j.tins.2004.04.009 [DOI] [PubMed] [Google Scholar]
  • 17.Persico AM, Bourgeron T (2006) Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci 29:349–358 10.1016/j.tins.2006.05.010 [DOI] [PubMed] [Google Scholar]
  • 18.Jordan BA, Fernholz BD, Boussac M, Xu C, Grigorean G, Ziff EB, Neubert TA (2004) Identification and verification of novel rodent postsynaptic density proteins. Mol Cell Proteomics 3:857–871 10.1074/mcp.M400045-MCP200 [DOI] [PubMed] [Google Scholar]
  • 19.Li KW, Hornshaw MP, Van Der Schors RC, Watson R, Tate S, Casetta B, Jimenez CR, Gouwenberg Y, Gundelfinger ED, Smalla KH, et al (2004) Proteomics analysis of rat brain postsynaptic density: implications of the diverse protein functional groups for the integration of synaptic physiology. J Biol Chem 279:987–1002 10.1074/jbc.M303116200 [DOI] [PubMed] [Google Scholar]
  • 20.Collins MO, Husi H, Yu L, Brandon JM, Anderson CN, Blackstock WP, Choudhary JS, Grant SG (2006) Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J Neurochem 97 Suppl 1:16–23 10.1111/j.1471-4159.2005.03507.x [DOI] [PubMed] [Google Scholar]
  • 21.Yoshimura Y, Yamauchi Y, Shinkawa T, Taoka M, Donai H, Takahashi N, Isobe T, Yamauchi T (2004) Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography-tandem mass spectrometry. J Neurochem 88:759–768 10.1046/j.1471-4159.2003.02136.x [DOI] [PubMed] [Google Scholar]
  • 22.Jordan BA, Fernholz BD, Boussac M, Xu C, Grigorean G, Ziff EB, Neubert TA (2004) Identification and verification of novel rodent postsynaptic density proteins. Mol Cell Proteomics 3:857–871 10.1074/mcp.M400045-MCP200 [DOI] [PubMed] [Google Scholar]
  • 23.Peng J, Kim MJ, Cheng D, Duong DM, Gygi SP, Sheng M (2004) Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J Biol Chem 279:21003–21011 10.1074/jbc.M400103200 [DOI] [PubMed] [Google Scholar]
  • 24.Banker G, Churchill L, Cotman CW (1974) Proteins of the postsynaptic density. J Cell Biol 63:456–465 10.1083/jcb.63.2.456 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Cotman CW, Banker G, Churchill L, Taylor D (1974) Isolation of postsynaptic densities from rat brain. J Cell Biol 63:441–455 10.1083/jcb.63.2.441 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Farr CD, Gafken PR, Norbeck AD, Doneanu CE, Stapels MD, Barofsky DF, Minami M, Saugstad JA (2004) Proteomic analysis of native metabotropic glutamate receptor 5 protein complexes reveals novel molecular constituents. J Neurochem 91:438–450 10.1111/j.1471-4159.2004.02735.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Pocklington AJ, Armstrong JD, Grant SG (2006) Organization of brain complexity—synapse proteome form and function. Brief Funct Genomic Proteomic 5:66–73 10.1093/bfgp/ell013 [DOI] [PubMed] [Google Scholar]
  • 28.Pocklington AJ, Cumiskey M, Armstrong JD, Grant SG (2006) The proteomes of neurotransmitter receptor complexes form modular networks with distributed functionality underlying plasticity and behaviour. Mol Syst Biol (http://www.nature.com/msb/journal/v2/n1/full/msb4100041.html) (electronically published January 17, 2006; accessed December 15, 2006) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24:1–29 10.1146/annurev.neuro.24.1.1 [DOI] [PubMed] [Google Scholar]
  • 30.Grant SG, Marshall MC, Page KL, Cumiskey MA, Armstrong JD (2005) Synapse proteomics of multiprotein complexes: en route from genes to nervous system diseases. Hum Mol Genet 14:R225–R234 10.1093/hmg/ddi330 [DOI] [PubMed] [Google Scholar]
  • 31.Sweigard JA, Ebbole DJ (2001) Functional analysis of pathogenicity genes in a genomics world. Curr Opin Microbiol 4:387–392 10.1016/S1369-5274(00)00222-8 [DOI] [PubMed] [Google Scholar]
  • 32.Vidan S, Snyder M (2001) Large-scale mutagenesis: yeast genetics in the genome area. Curr Opin Biotechnol 12:28–34 10.1016/S0958-1669(00)00171-3 [DOI] [PubMed] [Google Scholar]
  • 33.Skuse DH (2005) X-linked genes and mental functioning. Hum Mol Genet 14:R27–R32 10.1093/hmg/ddi112 [DOI] [PubMed] [Google Scholar]
  • 34.McLaren J, Bryson SE (1987) Review of recent epidemiological studies of mental retardation: prevalence, associated disorders, and etiology. Am J Ment Retard 92:243–254 [PubMed] [Google Scholar]
  • 35.Kleefstra T, Hamel BCJ (2005) X-linked mental retardation: further lumping, splitting and emerging phenotypes. Clin Genet 67:451–467 10.1111/j.1399-0004.2005.00434.x [DOI] [PubMed] [Google Scholar]
  • 36.Stoller A (1965) Epidemiology of mental deficiency in Victoria. In: Van Zelt JD (ed) Proceedings of the Fourth Interstate Conference on Mental Deficiency. Australian Group for the Scientific Study of Mental Deficiency, Melbourne, pp 18–28 [Google Scholar]
  • 37.Drillien CM (1967) The incidence of mental and physical handicaps in school age children of very low birth weight. II. Pediatrics 39:238–247 [PubMed] [Google Scholar]
  • 38.Baird PA, Sadovnick AD (1985) Mental retardation in over half-a-million consecutive livebirths: an epidemiological study. Am J Ment Defic 89:323–330 [PubMed] [Google Scholar]
  • 39.Stevenson RE, Schwartz CE (2002) Clinical and molecular contributions to the understanding of X-linked mental retardation. Cytogenet Genome Res 99:265–275 10.1159/000071603 [DOI] [PubMed] [Google Scholar]
  • 40.Ropers HH, Hamel BC (2005) X-linked mental retardation. Nat Rev Genet 6:46–57 10.1038/nrg1501 [DOI] [PubMed] [Google Scholar]
  • 41.Ropers HH (2006) X-linked mental retardation: many genes for a complex disorder. Curr Opin Genet Dev 16:260–269 10.1016/j.gde.2006.04.017 [DOI] [PubMed] [Google Scholar]
  • 42.Renieri A, Pescucci C, Longo I, Ariani F, Mari F, Meloni I (2005) Non-syndromic X-linked mental retardation: from a molecular to a clinical point of view. J Cell Physiol 204:8–20 10.1002/jcp.20296 [DOI] [PubMed] [Google Scholar]
  • 43.Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K, Muzny D, Platzer M, Howell GR, Burrows C, Bird CP, et al (2005) The DNA sequence of the human X chromosome. Nature 434:325–337 10.1038/nature03440 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Ashurst JL, Chen CK, Gilbert JG, Jekosch K, Keenan S, Meidl P, Searle SM, Stalker J, Storey R, Trevanion S, et al (2005) The Vertebrate Genome Annotation (Vega) database. Nucleic Acids Res 33:D459–D465 10.1093/nar/gki135 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Harsha HC, Suresh S, Amanchy R, Deshpande N, Shanker K, Yatish AJ, Muthusamy B, Vrushabendra BM, Rashmi BP, Chandrika KN, et al (2005) A manually curated functional annotation of the human X chromosome. Nat Genet 37:331–332 10.1038/ng0405-331 [DOI] [PubMed] [Google Scholar]
  • 46.Vallender EJ, Pearson NM, Lahn BT (2005) The X chromosome: not just her brother’s keeper. Nat Genet 37:343–345 10.1038/ng0405-343 [DOI] [PubMed] [Google Scholar]
  • 47.Inlow JK, Restifo LL (2004) Molecular and comparative genetics of mental retardation. Genetics 166:835–881 10.1534/genetics.166.2.835 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Chelly J, Khelfaoui M, Francis F, Cherif B, Bienvenu T (2006) Genetics and pathophysiology of mental retardation. Eur J Hum Genet 14:701–713 10.1038/sj.ejhg.5201595 [DOI] [PubMed] [Google Scholar]
  • 49.Conquet F, Bashir ZI, Davies CH, Daniel H, Ferraguti F, Bordi F, Franz-Bacon K, Reggiani A, Matarese V, Conde F, et al (1994) Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature 372:237–243 10.1038/372237a0 [DOI] [PubMed] [Google Scholar]
  • 50.Sakimura K, Kutsuwada T, Ito I, Manabe T, Takayama C, Kushiya E, Yagi T, Aizawa S, Inoue Y, Sugiyama H, et al (1995) Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor 1 subunit. Nature 373:151–155 10.1038/373151a0 [DOI] [PubMed] [Google Scholar]
  • 51.Migaud M, Charlesworth P, Dempster M, Webster LC, Watabe AM, Makhinson M, He Y, Ramsay MF, Morris RGM, Morrison JH, et al (1998) Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396:433–439 10.1038/24790 [DOI] [PubMed] [Google Scholar]
  • 52.Todd PK, Mack KJ, Malter JS (2003) The Fragile X mental retardation protein is required for type-I metabotropic glutamate receptor-dependent translation of PSD-95. Proc Natl Acad Sci USA 100:14374–14378 10.1073/pnas.2336265100 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Lau LF, Mammen A, Ehlers MD, Kindler S, Chung WJ, Garner CC, Huganir RL (1996) Interaction of the N-methyl-d-aspartate receptor complex with a novel synapse-associated protein, SAP102. J Biol Chem 271:21622–21628 10.1074/jbc.271.35.21622 [DOI] [PubMed] [Google Scholar]
  • 54.Muller BM, Kistner U, Kindler S, Chung WJ, Kuhlendahl S, Fenster SD, Lau LF, Veh RW, Huganir RL, Gundelfinger ED, et al (1996) SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo. Neuron 17:255–265 10.1016/S0896-6273(00)80157-9 [DOI] [PubMed] [Google Scholar]
  • 55.Tarpey P, Parnau J, Blow M, Woffendin H, Bignell G, Cox C, Cox J, Davies H, Edkins S, Holden S, et al (2004) Mutations in the DLG3 gene cause non-syndromic X-linked mental retardation. Am J Hum Genet 75:318–324 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Cuthbert PC, Stanford LE, Coba MP, Ainge JA, Fink AE, Opazo P, Delgado JY, Komiyama NH, O'Dell TJ, Grant SGN. SAP102/dlgh3 couples the NMDA receptor to specific plasticity pathways and learning strategies. J Neurosci (in press) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C, et al (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34:27–29 10.1038/ng1136 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP, Raynaud M, Ronce N, Lemonnier E, Calvas P, et al (2004) X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 74:552–557 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Chih B, Engelman H, Scheiffele P (2005) Control of excitatory and inhibitory synapse formation by neuroligins. Science 307:1324–1328 10.1126/science.1107470 [DOI] [PubMed] [Google Scholar]
  • 60.Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119:1013–1026 10.1016/j.cell.2004.11.035 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Chih B, Gollan L, Scheiffele P (2006) Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Neuron 51:171–178 10.1016/j.neuron.2006.06.005 [DOI] [PubMed] [Google Scholar]
  • 62.Dean C, Dresbach T (2006) Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function. Trends Neurosci 29:21–29 10.1016/j.tins.2005.11.003 [DOI] [PubMed] [Google Scholar]
  • 63.Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M, Gottmann K, Zhang W, Sudhof TC, Brose N (2006) Neuroligins determine synapse maturation and function. Neuron 51:741–754 10.1016/j.neuron.2006.09.003 [DOI] [PubMed] [Google Scholar]
  • 64.Kenwrick S, Watkins A, De Angelis E (2000) Neural cell recognition molecule L1: relating biological complexity to human disease mutations. Hum Mol Genet 9:879–886 10.1093/hmg/9.6.879 [DOI] [PubMed] [Google Scholar]
  • 65.Wiencken-Barger AE, Mavity-Hudson J, Bartsch U, Schachner M, Casagrande VA (2004) The role of L1 in axon pathfinding and fasciculation. Cereb Cortex 14:121–131 10.1093/cercor/bhg110 [DOI] [PubMed] [Google Scholar]
  • 66.Godenschwege TA, Kristiansen LV, Uthaman SB, Hortsch M, Murphey RK (2006) A conserved role for Drosophila Neuroglian and human L1-CAM in central-synapse formation. Curr Biol 16:12–23 10.1016/j.cub.2005.11.062 [DOI] [PubMed] [Google Scholar]
  • 67.Demyanenko GP, Tsai AY, Maness PF (1999) Abnormalities in neuronal process extension, hippocampal development, and the ventricular system of L1 knockout mice. J Neurosci 19:4907–4920 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Whittard JD, Sakurai T, Cassella MR, Gazdoiu M, Felsenfeld DP (2006) MAP kinase pathway-dependent phosphorylation of the L1-CAM ankyrin binding site regulates neuronal growth. Mol Biol Cell 17:2696–2706 10.1091/mbc.E06-01-0090 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Delaunoy J, Abidi F, Zeniou M, Jacquot S, Merienne K, Pannetier S, Schmitt M, Schwartz C, Hanauer A (2001) Mutations in the X-linked RSK2 gene (RPS6KA3) in patients with Coffin-Lowry syndrome. Hum Mutat 17:103–116 [DOI] [PubMed] [Google Scholar]
  • 70.Merienne K, Jacquot S, Pannetier S, Zeniou M, Bankier A, Gecz J, Mandel JL, Mulley J, Sassone-Corsi P, Hanauer A (1999) A missense mutation in RPS6KA3 (RSK2) responsible for non-specific mental retardation. Nat Genet 22:13–14 10.1038/8719 [DOI] [PubMed] [Google Scholar]
  • 71.Poteet-Smith CE, Smith JA, Lannigan DA, Freed TA, Sturgill TW (1999) Generation of constitutively active p90 ribosomal S6 kinase in vivo: implications for the mitogen-activated protein kinase-activated protein kinase family. J Biol Chem 274:22135–22138 10.1074/jbc.274.32.22135 [DOI] [PubMed] [Google Scholar]
  • 72.Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, Weinberg RJ, Worley PF, Sheng M (1999) Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23:569–582 10.1016/S0896-6273(00)80809-0 [DOI] [PubMed] [Google Scholar]
  • 73.Thomas GM, Rumbaugh GR, Harrar DB, Huganir RL (2005) Ribosomal S6 kinase 2 interacts with and phosphorylates PDZ domain-containing proteins and regulates AMPA receptor transmission. Proc Natl Acad Sci USA 102:15006–15011 10.1073/pnas.0507476102 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Yool DA, Edgar JM, Montague P, Malcolm S (2000) The proteolipid protein gene and myelin disorders in man and animal models. Hum Mol Genet 9:987–992 10.1093/hmg/9.6.987 [DOI] [PubMed] [Google Scholar]
  • 75.Kitagawa K, Sinoway MP, Yang C, Gould RM, Colman DR (1993) A proteolipid protein gene family: expression in sharks and rays and possible evolution from an ancestral gene encoding a pore-forming polypeptide. Neuron 11:433–448 10.1016/0896-6273(93)90148-K [DOI] [PubMed] [Google Scholar]
  • 76.Swanton E, Holland A, High S, Woodman P (2005) Disease-associated mutations cause premature oligomerization of myelin proteolipid protein in the endoplasmic reticulum. Proc Natl Acad Sci USA 102:4342–4347 10.1073/pnas.0407287102 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Gudz TI, Komuro H, Macklin WB (2006) Glutamate stimulates oligodendrocyte progenitor migration mediated via an αv integrin/myelin proteolipid protein complex. J Neurosci 26:2458–2466 10.1523/JNEUROSCI.4054-05.2006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Karadottir R, Cavelier P, Bergersen LH, Attwell D (2005) NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438:1162–1166 10.1038/nature04302 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Salter MG, Fern R (2005) NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438:1167–1171 10.1038/nature04301 [DOI] [PubMed] [Google Scholar]
  • 80.Meng Y, Zhang Y, Jia Z (2003) Synaptic transmission and plasticity in the absence of AMPA glutamate receptor GluR2 and GluR3. Neuron 39:163–176 10.1016/S0896-6273(03)00368-4 [DOI] [PubMed] [Google Scholar]
  • 81.Gecz J, Barnett S, Liu J, Hollway G, Donnelly A, Eyre H, Eshkevari HS, Baltazar R, Grunn A, Nagaraja R, et al (1999) Characterization of the human glutamate receptor subunit 3 gene (GRIA3), a candidate for bipolar disorder and nonspecific X-linked mental retardation. Genomics 62:356–368 10.1006/geno.1999.6032 [DOI] [PubMed] [Google Scholar]
  • 82.Wu Y, Jian Y, Zhang M, Splaine R, Huganir R, Schwartz C, Stevenson R, Valle D, Wang T (2005) Mutations in ionotropic AMPA receptor 3 (GluR3) in males with X-linked mental retardation. Paper presented at the 12th International Workshop on Fragile X and X-linked Mental Retardation. Williamsburg, VA, August 26–29 [Google Scholar]
  • 83.Carrie A, Jun L, Bienvenu T, Vinet MC, McDonell N, Couvert P, Zemni R, Cardona A, Van Buggebhout G, Frints S, et al (1999) A new member of the IL-1 receptor family highly expressed in hippocampus and involved in X-linked mental retardation. Nat Genet 23:25–31 [DOI] [PubMed] [Google Scholar]
  • 84.Bahi N, Friocourt G, Carrie A, Graham ME, Weiss JL, Chafey P, Fauchereau F, Burgoyne RD, Chelly J (2003) IL1 receptor accessory protein like, a protein involved in X-linked mental retardation, interacts with neuronal calcium sensor-1 and regulates exocytosis. Hum Mol Genet 12:1415–1425 10.1093/hmg/ddg147 [DOI] [PubMed] [Google Scholar]
  • 85.Klauck SM, Felder B, Kolb-Kokocinski A , Schuster C, Chiocchetti A, Schupp I, Wellenreuther R, Schmötzer G, Poustka F, Breitenbach-Koller L, et al (2006) Mutations in the ribosomal protein gene RPL10 suggest a novel modulating disease mechanism for autism. Mol Psychiatry 11:1073–1084 10.1038/sj.mp.4001883 [DOI] [PubMed] [Google Scholar]
  • 86.Bertani I, Rusconi L, Bolognese F, Forlani G, Conca B, De Monte L, Badaracco G, Landsberger N, Kilstrup-Nielsen C (2006) Functional consequences of mutations in CDKL5, an X-linked gene involved in infantile spasms and mental retardation. J Biol Chem 281:32048–32056 10.1074/jbc.M606325200 [DOI] [PubMed] [Google Scholar]
  • 87.Lin C, Franco B, Rosner MR (2005) CDKL5/Stk9 kinase inactivation is associated with neuronal developmental disorders. Hum Mol Genet 14:3775–3786 10.1093/hmg/ddi391 [DOI] [PubMed] [Google Scholar]
  • 88.van der Plas MC, Pilgram GSK, Plomp JJ, de Jong A, Fradkin LG, Noordermeer JN (2006) Dystrophin is required for appropriate retrograde control of neurotransmitter release at the Drosophila neuromuscular junction. J Neurosci 26:333–344 10.1523/JNEUROSCI.4069-05.2006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Kim TW, Wu K, Xu JL, Black IB (1992) Detection of dystrophin in the postsynaptic density of rat brain and deficiency in a mouse model of Duchenne muscular dystrophy. Proc Natl Acad Sci USA 89:11642–11644 10.1073/pnas.89.23.11642 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Albrecht DE, Froehner SC (2002) Syntrophins and dystrobrevins: defining the dystrophin scaffold at synapses. Neurosignals 11:123–129 10.1159/000065053 [DOI] [PubMed] [Google Scholar]
  • 91.Kim TW, Wu K, Black IB (1995) Deficiency of brain synaptic dystrophin in human Duchenne muscular dystrophy. Ann Neurol 38:446–449 10.1002/ana.410380315 [DOI] [PubMed] [Google Scholar]
  • 92.Zalfa F, Achsel T, Bagni C (2006) mRNPs, polysomes or granules: FMRP in neuronal protein synthesis. Curr Opin Neurobiol 16:265–269 10.1016/j.conb.2006.05.010 [DOI] [PubMed] [Google Scholar]
  • 93.van Galen EJ, Ramakers GJ (2005) Rho proteins, mental retardation and the neurobiological basis of intelligence. Prog Brain Res 147:295–317 [DOI] [PubMed] [Google Scholar]
  • 94.Tarpey PS, Stevens C, Teague J, Edkins S, O'Meara S, Avis T, Barthorpe S, Buck G, Butler A, Cole J, et al (2006) Mutations in the gene encoding the sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation. Am J Hum Genet 79:1119–1124 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Hong EJ, West AE, Greenberg ME (2005) Transcriptional control of cognitive development. Curr Opin Neurobiol 15:21–28 10.1016/j.conb.2005.01.002 [DOI] [PubMed] [Google Scholar]
  • 96.Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, et al (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31 10.1016/j.cell.2004.09.011 [DOI] [PubMed] [Google Scholar]
  • 97.Laumonnier F, Roger S, Guerin P, Molinari F, M’Rad R, Cahard D, Belhadj A, Halayem M, Persico AM, Elia M, et al (2006) Association of a functional deficit of the BKCa channel, a synaptic regulator of neuronal excitability, with autism and mental retardation. Am J Psychiatry 163:1622–1629 10.1176/appi.ajp.163.9.1622 [DOI] [PubMed] [Google Scholar]
  • 98.Sausbier M, Hu H, Arntz C, Feil S, Kamm S, Adelsberger H, Sausbier U, Cailer CA, Feil R, Hofmann F, et al (2004) Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency. Proc Natl Acad Sci USA 101:9474–9478 10.1073/pnas.0401702101 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Willatt L, Cox J, Barber J, Dachs Cabanas E, Collins A, Donnai D, FitzPatrick DR, Maher E, Martin H, Parnau J, et al (2005) 3q29 Microdeletion syndrome: clinical and molecular characterization of a new syndrome. Am J Hum Genet 77:154–160 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Shaw-Smith C, Pittman AM, Willatt L, Martin H, Rickman L, Gribble S, Curley R, Cumming S, Dunn C, Kalaitzopoulos D, et al (2006) Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nat Genet 38:1032–1037 10.1038/ng1858 [DOI] [PubMed] [Google Scholar]
  • 101.Komiyama NH, Watabe AM, Carlisle HJ, Porter K, Charlesworth P, Monti J, Strathdee DJ, O’Carroll CM, Martin SJ, Morris RG, et al (2002) SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci 22:9721–9732 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Ethell IM, Pasquale EB (2005) Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol 75:161–205 10.1016/j.pneurobio.2005.02.003 [DOI] [PubMed] [Google Scholar]
  • 103.Barnes AP, Milgram SM (2002) Signals from the X: signal transduction and X-linked mental retardation. Int J Dev Neurosci 20:397–406 10.1016/S0736-5748(02)00016-3 [DOI] [PubMed] [Google Scholar]
  • 104.Dierssen M, Ramakers GJ (2006) Dendritic pathology in mental retardation: from molecular genetics to neurobiology. Genes Brain Behav Suppl 2 5:48–60 10.1111/j.1601-183X.2006.00224.x [DOI] [PubMed] [Google Scholar]
  • 105.Vickers CA, Stephens B, Bowen J, Arbuthnott GW, Grant SG, Ingham CA (2006) Neurone specific regulation of dendritic spines in vivo by postsynaptic density 95 protein (PSD-95). Brain Res 1090:89–98 10.1016/j.brainres.2006.03.075 [DOI] [PubMed] [Google Scholar]
  • 106.Zechner U, Wilda M, Kehrer-Sawatzki H, Vogel W, Fundele R, Hameister H (2001) A high density of X-linked genes for general cognitive ability: a run-away process shaping human evolution? Trends Genet 17:697–701 10.1016/S0168-9525(01)02446-5 [DOI] [PubMed] [Google Scholar]
  • 107.Nguyen DK, Disteche CM (2006) Dosage compensation of the active X chromosome in mammals. Nat Genet 38:47–53 10.1038/ng1705 [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES