Abstract
The compositions of the major glycolipids (GL-1) of five strains of Thermus aquaticus, the type strain of T. filiformis, T. oshimai SPS-11, and Thermnus sp. strain CG-2 were examined by gas chromatography, gas chromatography-mass spectroscopy, fast atom bombardment-mass spectroscopy, and chemical methods. The results showed that, with the exception of T. aquaticus 15004, the organisms each have a major glycolipid whose structure was established as diglycosyl-(N-acyl)glycosaminyl-glycosyl diacylglycerol. Glucosamine was present in GL-1 of T. oshimai SPS-11 and Thermus sp. strain CG-2, while galactosamine was present in the GL-1 of T. aquaticus and T. filiformis. The novel major glycolipid of T. aquaticus 15004 was identified as galactofuranosyl-(N-acetyl)galactosaminyl-(N-acyl)galactosaminyl-gluc - osyl diacylglycerol. The hydroxy fatty acids found in the T. aquaticus strains and in the type strain of T. filiformis were exclusively amide linked to the galactosamine of the major glycolipid. Ester-linked hydroxy fatty acids were not detected in the diacylglycerol moiety of GL-1 of these organisms. Hydroxy fatty acids were detected neither in the major glycolipid of T. oshimai SPS-11 and Thermnus sp. strain CG-2, in which glucosamine is present, nor in the major phospholipid of any of the strains examined.
Full Text
The Full Text of this article is available as a PDF (225.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alugupalli S., Lanéelle M. A., Larsson L., Daffé M. Chemical characterization of the ester-linked 3-hydroxy fatty acyl-containing lipids in Mycobacterium tuberculosis. J Bacteriol. 1995 Aug;177(15):4566–4570. doi: 10.1128/jb.177.15.4566-4570.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bermingham M. A., Deol B. S., Still J. L. Effect of streptomycin on lipid composition with particular reference to cyclic depsipeptide biosynthesis in Serratia marcescens and other micro-organisms. Biochem J. 1970 Oct;119(5):861–869. doi: 10.1042/bj1190861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke N. G., Hazlewood G. P., Dawson R. M. Structure of diabolic acid-containing phospholipids isolated from Butyrivibrio sp. Biochem J. 1980 Nov 1;191(2):561–569. doi: 10.1042/bj1910561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dell A. Preparation and desorption mass spectrometry of permethyl and peracetyl derivatives of oligosaccharides. Methods Enzymol. 1990;193:647–660. doi: 10.1016/0076-6879(90)93443-o. [DOI] [PubMed] [Google Scholar]
- Ferraz A. S., Carreto L., Tenreiro S., Nobre M. F., da Costa M. S. Polar lipids and fatty acid composition of Thermus strains from New Zealand. Antonie Van Leeuwenhoek. 1994;66(4):357–363. doi: 10.1007/BF00882773. [DOI] [PubMed] [Google Scholar]
- Johnson R. S., Her G. R., Grabarek J., Hawiger J., Reinhold V. N. Structural characterization of monophosphoryl lipid A homologs obtained from Salmonella minnesota Re595 lipopolysaccharide. J Biol Chem. 1990 May 15;265(14):8108–8116. [PubMed] [Google Scholar]
- Jones C. Full assignment of the NMR spectrum of the capsular polysaccharide from Streptococcus pneumoniae serotype 10A. Carbohydr Res. 1995 Apr 3;269(1):175–181. doi: 10.1016/0008-6215(94)00340-l. [DOI] [PubMed] [Google Scholar]
- Kawahara K., Seydel U., Matsuura M., Danbara H., Rietschel E. T., Zähringer U. Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis. FEBS Lett. 1991 Nov 4;292(1-2):107–110. doi: 10.1016/0014-5793(91)80845-t. [DOI] [PubMed] [Google Scholar]
- Kelly R. F., Severn W. B., Richards J. C., Perry M. B., MacLean L. L., Tomás J. M., Merino S., Whitfield C. Structural variation in the O-specific polysaccharides of Klebsiella pneumoniae serotype O1 and O8 lipopolysaccharide: evidence for clonal diversity in rfb genes. Mol Microbiol. 1993 Nov;10(3):615–625. doi: 10.1111/j.1365-2958.1993.tb00933.x. [DOI] [PubMed] [Google Scholar]
- Maclean D. J., Scott K. J. Identification of glucitol (sorbitol) and ribitol in a rust fungus, Puccinia graminis f. sp. tritici. J Gen Microbiol. 1976 Nov;97(1):83–89. doi: 10.1099/00221287-97-1-83. [DOI] [PubMed] [Google Scholar]
- Miyagawa E., Azuma R., Suto T., Yano I. Occurrence of free ceramides in Bacteroides fragilis NCTC 9343. J Biochem. 1979 Aug;86(2):311–320. doi: 10.1093/oxfordjournals.jbchem.a132528. [DOI] [PubMed] [Google Scholar]
- Mueller D. R., Domon B. M., Blum W., Raschdorf F., Richter W. J. Direct stereochemical assignment of sugar subunits in naturally occurring glycosides by low energy collision induced dissociation. Application to papulacandin antibiotics. Biomed Environ Mass Spectrom. 1988 Apr 15;15(8):441–446. doi: 10.1002/bms.1200150805. [DOI] [PubMed] [Google Scholar]
- Oshima M., Yamakawa T. Chemical structure of a novel glycolipid from an extreme thermophile, Flavobacterium thermophilum. Biochemistry. 1974 Mar 12;13(6):1140–1146. doi: 10.1021/bi00703a014. [DOI] [PubMed] [Google Scholar]
- Pask-Hughes R. A., Shaw N. Glycolipids from some extreme thermophilic bacteria belonging to the genus Thermus. J Bacteriol. 1982 Jan;149(1):54–58. doi: 10.1128/jb.149.1.54-58.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paul G., Wieland F. Sequence of the halobacterial glycosaminoglycan. J Biol Chem. 1987 Jul 15;262(20):9587–9593. [PubMed] [Google Scholar]
- Previato J. O., Gorin P. A., Mazurek M., Xavier M. T., Fournet B., Wieruszesk J. M., Mendonça-Previato L. Primary structure of the oligosaccharide chain of lipopeptidophosphoglycan of epimastigote forms of Trypanosoma cruzi. J Biol Chem. 1990 Feb 15;265(5):2518–2526. [PubMed] [Google Scholar]
- Richter W. J., Müller D. R., Domon B. Tandem mass spectrometry in structural characterization of oligosaccharide residues in glycoconjugates. Methods Enzymol. 1990;193:607–623. doi: 10.1016/0076-6879(90)93441-m. [DOI] [PubMed] [Google Scholar]
- Veerkamp J. H. Biochemical changes in Bifidobacterium bifidum var. pennsylvanicus after cell wall inhibition. V. Structure of the galactosyldiglycerides. Biochim Biophys Acta. 1972 Jul 19;273(2):359–367. doi: 10.1016/0304-4165(72)90227-9. [DOI] [PubMed] [Google Scholar]
- Wilkinson S. G. Composition and structure of the ornithine-containing lipid from Pseudomonas rubescens. Biochim Biophys Acta. 1972 May 23;270(1):1–17. doi: 10.1016/0005-2760(72)90171-3. [DOI] [PubMed] [Google Scholar]
- Williams R. A., Smith K. E., Welch S. G., Micallef J., Sharp R. J. DNA relatedness of Thermus strains, description of Thermus brockianus sp. nov., and proposal to reestablish Thermus thermophilus (Oshima and Imahori) Int J Syst Bacteriol. 1995 Jul;45(3):495–499. doi: 10.1099/00207713-45-3-495. [DOI] [PubMed] [Google Scholar]
- de Lederkremer R. M., Lima C., Ramirez M. I., Ferguson M. A., Homans S. W., Thomas-Oates J. Complete structure of the glycan of lipopeptidophosphoglycan from Trypanosoma cruzi Epimastigotes. J Biol Chem. 1991 Dec 15;266(35):23670–23675. [PubMed] [Google Scholar]
