Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Nov;178(22):6647–6649. doi: 10.1128/jb.178.22.6647-6649.1996

Effects of overexpression of Pkn2, a transmembrane protein serine/threonine kinase, on development of Myxococcus xanthus.

H Udo 1, M Inouye 1, S Inouye 1
PMCID: PMC178556  PMID: 8932326

Abstract

Pkn2 is a putative transmembrane protein serine/threonine kinase required for normal development of Myxococcus xanthus. The effect of Pkn2 overexpression on development of M. xanthus was examined by expressing pkn2 under the control of a kanamycin promoter. Pkn2 was clearly detected by Western blot (immunoblot) analysis in the overexpression strain (the PKm/pkn2 strain) but could not be detected in the wild-type strain. Overexpressed Pkn2 was located almost exclusively in the membrane fraction, suggesting that Pkn2 is a transmembrane receptor-type protein Ser/Thr kinase. The PKm/pkn2 strain formed fruiting bodies more slowly than the wild-type strain, in contrast to a Pkn2 deletion strain, the delta pkn2 strain, which developed faster than the wild-type strain. However, spore production was reduced in both the PKm/pkn2 and delta pkn2 strains. These data suggest that Pkn2 functions as a negative regulator for fruiting-body formation and that the proper level of Pkn2 is necessary for maximum myxospore yield.

Full Text

The Full Text of this article is available as a PDF (694.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attisano L., Cárcamo J., Ventura F., Weis F. M., Massagué J., Wrana J. L. Identification of human activin and TGF beta type I receptors that form heteromeric kinase complexes with type II receptors. Cell. 1993 Nov 19;75(4):671–680. doi: 10.1016/0092-8674(93)90488-c. [DOI] [PubMed] [Google Scholar]
  2. Campos J. M., Geisselsoder J., Zusman D. R. Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J Mol Biol. 1978 Feb 25;119(2):167–178. doi: 10.1016/0022-2836(78)90431-x. [DOI] [PubMed] [Google Scholar]
  3. Downard J., Ramaswamy S. V., Kil K. S. Identification of esg, a genetic locus involved in cell-cell signaling during Myxococcus xanthus development. J Bacteriol. 1993 Dec;175(24):7762–7770. doi: 10.1128/jb.175.24.7762-7770.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ebner R., Chen R. H., Shum L., Lawler S., Zioncheck T. F., Lee A., Lopez A. R., Derynck R. Cloning of a type I TGF-beta receptor and its effect on TGF-beta binding to the type II receptor. Science. 1993 May 28;260(5112):1344–1348. doi: 10.1126/science.8388127. [DOI] [PubMed] [Google Scholar]
  5. Firtel R. A. Integration of signaling information in controlling cell-fate decisions in Dictyostelium. Genes Dev. 1995 Jun 15;9(12):1427–1444. doi: 10.1101/gad.9.12.1427. [DOI] [PubMed] [Google Scholar]
  6. Galyov E. E., Håkansson S., Forsberg A., Wolf-Watz H. A secreted protein kinase of Yersinia pseudotuberculosis is an indispensable virulence determinant. Nature. 1993 Feb 25;361(6414):730–732. doi: 10.1038/361730a0. [DOI] [PubMed] [Google Scholar]
  7. Gaskins C., Clark A. M., Aubry L., Segall J. E., Firtel R. A. The Dictyostelium MAP kinase ERK2 regulates multiple, independent developmental pathways. Genes Dev. 1996 Jan 1;10(1):118–128. doi: 10.1101/gad.10.1.118. [DOI] [PubMed] [Google Scholar]
  8. Hanks S. K., Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 1995 May;9(8):576–596. [PubMed] [Google Scholar]
  9. Harwood A. J., Hopper N. A., Simon M. N., Driscoll D. M., Veron M., Williams J. G. Culmination in Dictyostelium is regulated by the cAMP-dependent protein kinase. Cell. 1992 May 15;69(4):615–624. doi: 10.1016/0092-8674(92)90225-2. [DOI] [PubMed] [Google Scholar]
  10. Harwood A. J., Plyte S. E., Woodgett J., Strutt H., Kay R. R. Glycogen synthase kinase 3 regulates cell fate in Dictyostelium. Cell. 1995 Jan 13;80(1):139–148. doi: 10.1016/0092-8674(95)90458-1. [DOI] [PubMed] [Google Scholar]
  11. Inouye M., Inouye S., Zusman D. R. Gene expression during development of Myxococcus xanthus: pattern of protein synthesis. Dev Biol. 1979 Feb;68(2):579–591. doi: 10.1016/0012-1606(79)90228-8. [DOI] [PubMed] [Google Scholar]
  12. Kashefi K., Hartzell P. L. Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF- defect. Mol Microbiol. 1995 Feb;15(3):483–494. doi: 10.1111/j.1365-2958.1995.tb02262.x. [DOI] [PubMed] [Google Scholar]
  13. Kim S. K., Kaiser D., Kuspa A. Control of cell density and pattern by intercellular signaling in Myxococcus development. Annu Rev Microbiol. 1992;46:117–139. doi: 10.1146/annurev.mi.46.100192.001001. [DOI] [PubMed] [Google Scholar]
  14. Kroos L., Kuspa A., Kaiser D. A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev Biol. 1986 Sep;117(1):252–266. doi: 10.1016/0012-1606(86)90368-4. [DOI] [PubMed] [Google Scholar]
  15. Lin H. Y., Wang X. F., Ng-Eaton E., Weinberg R. A., Lodish H. F. Expression cloning of the TGF-beta type II receptor, a functional transmembrane serine/threonine kinase. Cell. 1992 Feb 21;68(4):775–785. doi: 10.1016/0092-8674(92)90152-3. [DOI] [PubMed] [Google Scholar]
  16. Mathews L. S., Vale W. W. Expression cloning of an activin receptor, a predicted transmembrane serine kinase. Cell. 1991 Jun 14;65(6):973–982. doi: 10.1016/0092-8674(91)90549-e. [DOI] [PubMed] [Google Scholar]
  17. Matsumoto A., Hong S. K., Ishizuka H., Horinouchi S., Beppu T. Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by a eukaryotic-type protein kinase. Gene. 1994 Aug 19;146(1):47–56. doi: 10.1016/0378-1119(94)90832-x. [DOI] [PubMed] [Google Scholar]
  18. Mutzel R., Lacombe M. L., Simon M. N., de Gunzburg J., Veron M. Cloning and cDNA sequence of the regulatory subunit of cAMP-dependent protein kinase from Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1987 Jan;84(1):6–10. doi: 10.1073/pnas.84.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Muñoz-Dorado J., Inouye S., Inouye M. A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium. Cell. 1991 Nov 29;67(5):995–1006. doi: 10.1016/0092-8674(91)90372-6. [DOI] [PubMed] [Google Scholar]
  20. Shimkets L. J. Social and developmental biology of the myxobacteria. Microbiol Rev. 1990 Dec;54(4):473–501. doi: 10.1128/mr.54.4.473-501.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Udo H., Munoz-Dorado J., Inouye M., Inouye S. Myxococcus xanthus, a gram-negative bacterium, contains a transmembrane protein serine/threonine kinase that blocks the secretion of beta-lactamase by phosphorylation. Genes Dev. 1995 Apr 15;9(8):972–983. doi: 10.1101/gad.9.8.972. [DOI] [PubMed] [Google Scholar]
  22. Wrana J. L., Attisano L., Wieser R., Ventura F., Massagué J. Mechanism of activation of the TGF-beta receptor. Nature. 1994 Aug 4;370(6488):341–347. doi: 10.1038/370341a0. [DOI] [PubMed] [Google Scholar]
  23. Zhang C. C. A gene encoding a protein related to eukaryotic protein kinases from the filamentous heterocystous cyanobacterium Anabaena PCC 7120. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11840–11844. doi: 10.1073/pnas.90.24.11840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zhang C. C. Bacterial signalling involving eukaryotic-type protein kinases. Mol Microbiol. 1996 Apr;20(1):9–15. doi: 10.1111/j.1365-2958.1996.tb02483.x. [DOI] [PubMed] [Google Scholar]
  25. Zhang W., Inouye M., Inouye S. Reciprocal regulation of the differentiation of Myxococcus xanthus by Pkn5 and Pkn6, eukaryotic-like Ser/Thr protein kinases. Mol Microbiol. 1996 Apr;20(2):435–447. doi: 10.1111/j.1365-2958.1996.tb02630.x. [DOI] [PubMed] [Google Scholar]
  26. Zhang W., Munoz-Dorado J., Inouye M., Inouye S. Identification of a putative eukaryotic-like protein kinase family in the developmental bacterium Myxococcus xanthus. J Bacteriol. 1992 Aug;174(16):5450–5453. doi: 10.1128/jb.174.16.5450-5453.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES