Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Dec;178(23):6665–6670. doi: 10.1128/jb.178.23.6665-6670.1996

Mannitol, a novel bacterial compatible solute in Pseudomonas putida S12.

E P Kets 1, E A Galinski 1, M de Wit 1, J A de Bont 1, H J Heipieper 1
PMCID: PMC178559  PMID: 8955280

Abstract

The aim of this study was to identify the compatible solutes accumulated by Pseudomonas putida S12 subjected to osmotic stress. In response to reduced water activity, P. putida S12 accumulated Nalpha-acetylglutaminylglutamine amide (NAGGN) simultaneously with a novel compatible solute identified as mannitol (using 13C- and 1H-nuclear magnetic resonance, liquid chromatography-mass spectroscopy and high-performance liquid chromatography methods) to maximum concentrations of 74 and 258 micromol g (dry weight) of cells(-1), respectively. The intracellular amounts of each solute varied with both the type and amount of osmolyte applied to induce osmotic stress in the medium. Both solutes were synthesized de novo. Addition of betaine to the medium resulted in accumulation of this compound and depletion of both NAGGN and mannitol. Mannitol and NAGGN were accumulated when sucrose instead of salts was used to reduce the medium water activity. Furthermore, both compatible solutes were accumulated when glucose was substituted by other carbon sources. However, the intracellular quantities of mannitol decreased when fructose, succinate, or lactate were applied as a carbon source. Mannitol was also raised to high intracellular concentrations by other salt-stressed Pseudomonas putida strains. This is the first study demonstrating a principal role for the de novo-synthesized polyol mannitol in osmoadaptation of a heterotrophic eubacterium.

Full Text

The Full Text of this article is available as a PDF (205.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amezaga M. R., Davidson I., McLaggan D., Verheul A., Abee T., Booth I. R. The role of peptide metabolism in the growth of Listeria monocytogenes ATCC 23074 at high osmolarity. Microbiology. 1995 Jan;141(Pt 1):41–49. doi: 10.1099/00221287-141-1-41. [DOI] [PubMed] [Google Scholar]
  2. Arakawa T., Timasheff S. N. The stabilization of proteins by osmolytes. Biophys J. 1985 Mar;47(3):411–414. doi: 10.1016/S0006-3495(85)83932-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  4. Burg M. B. Molecular basis for osmoregulation of organic osmolytes in renal medullary cells. J Exp Zool. 1994 Feb 1;268(2):171–175. doi: 10.1002/jez.1402680216. [DOI] [PubMed] [Google Scholar]
  5. Conway T. The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol Rev. 1992 Sep;9(1):1–27. doi: 10.1111/j.1574-6968.1992.tb05822.x. [DOI] [PubMed] [Google Scholar]
  6. Csonka L. N., Hanson A. D. Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol. 1991;45:569–606. doi: 10.1146/annurev.mi.45.100191.003033. [DOI] [PubMed] [Google Scholar]
  7. Csonka L. N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev. 1989 Mar;53(1):121–147. doi: 10.1128/mr.53.1.121-147.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. D'Souza-Ault M. R., Smith L. T., Smith G. M. Roles of N-acetylglutaminylglutamine amide and glycine betaine in adaptation of Pseudomonas aeruginosa to osmotic stress. Appl Environ Microbiol. 1993 Feb;59(2):473–478. doi: 10.1128/aem.59.2.473-478.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hartmans S., Jansen M. W., van der Werf M. J., de Bont J. A. Bacterial metabolism of 3-chloroacrylic acid. J Gen Microbiol. 1991 Aug;137(8):2025–2032. doi: 10.1099/00221287-137-8-2025. [DOI] [PubMed] [Google Scholar]
  10. Hartmans S., van der Werf M. J., de Bont J. A. Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl Environ Microbiol. 1990 May;56(5):1347–1351. doi: 10.1128/aem.56.5.1347-1351.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heipieper H. J., Diefenbach R., Keweloh H. Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol. 1992 Jun;58(6):1847–1852. doi: 10.1128/aem.58.6.1847-1852.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leslie S. B., Israeli E., Lighthart B., Crowe J. H., Crowe L. M. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol. 1995 Oct;61(10):3592–3597. doi: 10.1128/aem.61.10.3592-3597.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leslie S. B., Teter S. A., Crowe L. M., Crowe J. H. Trehalose lowers membrane phase transitions in dry yeast cells. Biochim Biophys Acta. 1994 Jun 1;1192(1):7–13. doi: 10.1016/0005-2736(94)90136-8. [DOI] [PubMed] [Google Scholar]
  14. Loos H., Krämer R., Sahm H., Sprenger G. A. Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection. J Bacteriol. 1994 Dec;176(24):7688–7693. doi: 10.1128/jb.176.24.7688-7693.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marconi A. M., Beltrametti F., Bestetti G., Solinas F., Ruzzi M., Galli E., Zennaro E. Cloning and characterization of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol. 1996 Jan;62(1):121–127. doi: 10.1128/aem.62.1.121-127.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Neubauer P., Hofmann K. Efficient use of lactose for the lac promoter-controlled overexpression of the main antigenic protein of the foot and mouth disease virus in Escherichia coli under fed-batch fermentation conditions. FEMS Microbiol Rev. 1994 May;14(1):99–102. doi: 10.1111/j.1574-6976.1994.tb00080.x. [DOI] [PubMed] [Google Scholar]
  17. Pocard J. A., Smith L. T., Smith G. M., Le Rudulier D. A prominent role for glucosylglycerol in the adaptation of Pseudomonas mendocina SKB70 to osmotic stress. J Bacteriol. 1994 Nov;176(22):6877–6884. doi: 10.1128/jb.176.22.6877-6884.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Potts M. Desiccation tolerance of prokaryotes. Microbiol Rev. 1994 Dec;58(4):755–805. doi: 10.1128/mr.58.4.755-805.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Salter G. J., Kell D. B. Solvent selection for whole cell biotransformations in organic media. Crit Rev Biotechnol. 1995;15(2):139–177. doi: 10.3109/07388559509147404. [DOI] [PubMed] [Google Scholar]
  20. Tarczynski M. C., Jensen R. G., Bohnert H. J. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science. 1993 Jan 22;259(5094):508–510. doi: 10.1126/science.259.5094.508. [DOI] [PubMed] [Google Scholar]
  21. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES