Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Dec;178(23):6671–6676. doi: 10.1128/jb.178.23.6671-6676.1996

Conjugal transfer of the 5-nitroimidazole resistance plasmid pIP417 from Bacteroides vulgatus BV-17: characterization and nucleotide sequence analysis of the mobilization region.

S Trinh 1, A Haggoud 1, G Reysset 1
PMCID: PMC178560  PMID: 8955281

Abstract

Three small 5-nitroimidazole (5-Ni) resistance plasmids (pIP417, pIP419, and pIP421) from Bacteroides clinical isolates are transferable by a conjugative process during homologous or heterologous matings. The mobilization properties of pIP417 originated from strain BV-17 of Bacteroides vulgatus were studied. The plasmid was successfully introduced by in vitro conjugation into different strains of Bacteroides and Prevotella species and could be transferred back from these various strains to a plasmid-free 5-Ni-sensitive Bacteroides fragilis strain, indicating that in vivo spread of the resistance gene may occur. The transfer of plasmid pIP417 harbored by the Tc(r) strain BF-2 of B. fragilis was stimulated by low concentrations of tetracycline or chlorotetracycline. This suggests a possible role for coresident conjugative transposons in the dissemination of 5-Ni resistance among gram-negative anaerobes. The nucleotide sequence of the 2.1-kb DNA mobilization region was determined. It contains a putative origin of transfer (oriT) in an A+T-rich-region, including three inverted repeats, and two integration host factor binding sites. The two identified mobilization genes (mobA and mobB) are organized in one operon and were both required for efficient transfer. Southern blotting indicated that the mobilization region of plasmid pIP417 is closely related to that of both the erythromycin resistance plasmid pBFTM1O and the 5-Ni resistance plasmid pIP419 but not to that of the 5-Ni resistance plasmid pIP421.

Full Text

The Full Text of this article is available as a PDF (224.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breuil J., Dublanchet A., Truffaut N., Sebald M. Transferable 5-nitroimidazole resistance in the Bacteroides fragilis group. Plasmid. 1989 Mar;21(2):151–154. doi: 10.1016/0147-619x(89)90060-7. [DOI] [PubMed] [Google Scholar]
  3. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Friedman D. I. Integration host factor: a protein for all reasons. Cell. 1988 Nov 18;55(4):545–554. doi: 10.1016/0092-8674(88)90213-9. [DOI] [PubMed] [Google Scholar]
  5. Gamas P., Burger A. C., Churchward G., Caro L., Galas D., Chandler M. Replication of pSC101: effects of mutations in the E. coli DNA binding protein IHF. Mol Gen Genet. 1986 Jul;204(1):85–89. doi: 10.1007/BF00330192. [DOI] [PubMed] [Google Scholar]
  6. Haggoud A., Reysset G., Azeddoug H., Sebald M. Nucleotide sequence analysis of two 5-nitroimidazole resistance determinants from Bacteroides strains and of a new insertion sequence upstream of the two genes. Antimicrob Agents Chemother. 1994 May;38(5):1047–1051. doi: 10.1128/aac.38.5.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haggoud A., Trinh S., Moumni M., Reysset G. Genetic analysis of the minimal replicon of plasmid pIP417 and comparison with the other encoding 5-nitroimidazole resistance plasmids from Bacteroides spp. Plasmid. 1995 Sep;34(2):132–143. doi: 10.1006/plas.1995.9994. [DOI] [PubMed] [Google Scholar]
  8. Hecht D. W., Jagielo T. J., Malamy M. H. Conjugal transfer of antibiotic resistance factors in Bacteroides fragilis: the btgA and btgB genes of plasmid pBFTM10 are required for its transfer from Bacteroides fragilis and for its mobilization by IncP beta plasmid R751 in Escherichia coli. J Bacteriol. 1991 Dec;173(23):7471–7480. doi: 10.1128/jb.173.23.7471-7480.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lanka E., Wilkins B. M. DNA processing reactions in bacterial conjugation. Annu Rev Biochem. 1995;64:141–169. doi: 10.1146/annurev.bi.64.070195.001041. [DOI] [PubMed] [Google Scholar]
  10. Li L. Y., Shoemaker N. B., Salyers A. A. Location and characteristics of the transfer region of a Bacteroides conjugative transposon and regulation of transfer genes. J Bacteriol. 1995 Sep;177(17):4992–4999. doi: 10.1128/jb.177.17.4992-4999.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Li L. Y., Shoemaker N. B., Wang G. R., Cole S. P., Hashimoto M. K., Wang J., Salyers A. A. The mobilization regions of two integrated Bacteroides elements, NBU1 and NBU2, have only a single mobilization protein and may be on a cassette. J Bacteriol. 1995 Jul;177(14):3940–3945. doi: 10.1128/jb.177.14.3940-3945.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lynn R. M., Bjornsti M. A., Caron P. R., Wang J. C. Peptide sequencing and site-directed mutagenesis identify tyrosine-727 as the active site tyrosine of Saccharomyces cerevisiae DNA topoisomerase I. Proc Natl Acad Sci U S A. 1989 May;86(10):3559–3563. doi: 10.1073/pnas.86.10.3559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Murphy C. G., Malamy M. H. Characterization of a "mobilization cassette" in transposon Tn4399 from Bacteroides fragilis. J Bacteriol. 1993 Sep;175(18):5814–5823. doi: 10.1128/jb.175.18.5814-5823.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Murphy C. G., Malamy M. H. Requirements for strand- and site-specific cleavage within the oriT region of Tn4399, a mobilizing transposon from Bacteroides fragilis. J Bacteriol. 1995 Jun;177(11):3158–3165. doi: 10.1128/jb.177.11.3158-3165.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nikolich M. P., Shoemaker N. B., Wang G. R., Salyers A. A. Characterization of a new type of Bacteroides conjugative transposon, Tcr Emr 7853. J Bacteriol. 1994 Nov;176(21):6606–6612. doi: 10.1128/jb.176.21.6606-6612.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Novicki T. J., Hecht D. W. Characterization and DNA sequence of the mobilization region of pLV22a from Bacteroides fragilis. J Bacteriol. 1995 Aug;177(15):4466–4473. doi: 10.1128/jb.177.15.4466-4473.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pansegrau W., Lanka E., Barth P. T., Figurski D. H., Guiney D. G., Haas D., Helinski D. R., Schwab H., Stanisich V. A., Thomas C. M. Complete nucleotide sequence of Birmingham IncP alpha plasmids. Compilation and comparative analysis. J Mol Biol. 1994 Jun 24;239(5):623–663. doi: 10.1006/jmbi.1994.1404. [DOI] [PubMed] [Google Scholar]
  18. Pansegrau W., Lanka E. Common sequence motifs in DNA relaxases and nick regions from a variety of DNA transfer systems. Nucleic Acids Res. 1991 Jun 25;19(12):3455–3455. doi: 10.1093/nar/19.12.3455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Parsot C. Evolution of biosynthetic pathways: a common ancestor for threonine synthase, threonine dehydratase and D-serine dehydratase. EMBO J. 1986 Nov;5(11):3013–3019. doi: 10.1002/j.1460-2075.1986.tb04600.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Privitera G., Dublanchet A., Sebald M. Transfer of multiple antibiotic resistance between subspecies of Bacteroides fragilis. J Infect Dis. 1979 Jan;139(1):97–101. doi: 10.1093/infdis/139.1.97. [DOI] [PubMed] [Google Scholar]
  21. Reysset G. Genetics of 5-nitroimidazole resistance in Bacteroides species. Anaerobe. 1996 Apr;2(2):59–69. doi: 10.1006/anae.1996.0008. [DOI] [PubMed] [Google Scholar]
  22. Reysset G., Haggoud A., Sebald M. Genetics of resistance of Bacteroides species to 5-nitroimidazole. Clin Infect Dis. 1993 Jun;16 (Suppl 4):S401–S403. doi: 10.1093/clinids/16.supplement_4.s401. [DOI] [PubMed] [Google Scholar]
  23. Reysset G., Haggoud A., Su W. J., Sebald M. Genetic and molecular analysis of pIP417 and pIP419: Bacteroides plasmids encoding 5-nitroimidazole resistance. Plasmid. 1992 May;27(3):181–190. doi: 10.1016/0147-619x(92)90020-b. [DOI] [PubMed] [Google Scholar]
  24. Salyers A. A., Shoemaker N. B. Conjugative transposons: the force behind the spread of antibiotic resistance genes among Bacteroides clinical isolates. Anaerobe. 1995 Jun;1(3):143–150. doi: 10.1006/anae.1995.1011. [DOI] [PubMed] [Google Scholar]
  25. Salyers A. A., Shoemaker N. B., Li L. Y. In the driver's seat: the Bacteroides conjugative transposons and the elements they mobilize. J Bacteriol. 1995 Oct;177(20):5727–5731. doi: 10.1128/jb.177.20.5727-5731.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Salyers A. A., Shoemaker N. B., Stevens A. M., Li L. Y. Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol Rev. 1995 Dec;59(4):579–590. doi: 10.1128/mr.59.4.579-590.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shoemaker N. B., Salyers A. A. A cryptic 65-kilobase-pair transposonlike element isolated from Bacteroides uniformis has homology with Bacteroides conjugal tetracycline resistance elements. J Bacteriol. 1990 Apr;172(4):1694–1702. doi: 10.1128/jb.172.4.1694-1702.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smith C. J. Development and use of cloning systems for Bacteroides fragilis: cloning of a plasmid-encoded clindamycin resistance determinant. J Bacteriol. 1985 Oct;164(1):294–301. doi: 10.1128/jb.164.1.294-301.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Smith C. J., Parker A. C. A gene product related to Tral is required for the mobilization of Bacteroides mobilizable transposons and plasmids. Mol Microbiol. 1996 May;20(4):741–750. doi: 10.1111/j.1365-2958.1996.tb02513.x. [DOI] [PubMed] [Google Scholar]
  30. Smith C. J., Rollins L. A., Parker A. C. Nucleotide sequence determination and genetic analysis of the Bacteroides plasmid, pBI143. Plasmid. 1995 Nov;34(3):211–222. doi: 10.1006/plas.1995.0007. [DOI] [PubMed] [Google Scholar]
  31. Stevens A. M., Sanders J. M., Shoemaker N. B., Salyers A. A. Genes involved in production of plasmidlike forms by a Bacteroides conjugal chromosomal element share amino acid homology with two-component regulatory systems. J Bacteriol. 1992 May;174(9):2935–2942. doi: 10.1128/jb.174.9.2935-2942.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stevens A. M., Shoemaker N. B., Li L. Y., Salyers A. A. Tetracycline regulation of genes on Bacteroides conjugative transposons. J Bacteriol. 1993 Oct;175(19):6134–6141. doi: 10.1128/jb.175.19.6134-6141.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tally F. P., Snydman D. R., Gorbach S. L., Malamy M. H. Plasmid-mediated, transferable resistance to clindamycin and erythromycin in Bacteroides fragilis. J Infect Dis. 1979 Jan;139(1):83–88. doi: 10.1093/infdis/139.1.83. [DOI] [PubMed] [Google Scholar]
  34. Trinh S., Haggoud A., Reysset G., Sebald M. Plasmids pIP419 and pIP421 from Bacteroides: 5-nitroimidazole resistance genes and their upstream insertion sequence elements. Microbiology. 1995 Apr;141(Pt 4):927–935. doi: 10.1099/13500872-141-4-927. [DOI] [PubMed] [Google Scholar]
  35. Wang J. C. DNA topoisomerases. Annu Rev Biochem. 1985;54:665–697. doi: 10.1146/annurev.bi.54.070185.003313. [DOI] [PubMed] [Google Scholar]
  36. Welch R. A., Jones K. R., Macrina F. L. Transferable lincosamide-macrolide resistance in Bacteroides. Plasmid. 1979 Apr;2(2):261–268. doi: 10.1016/0147-619x(79)90044-1. [DOI] [PubMed] [Google Scholar]
  37. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES