Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Dec;178(23):6714–6719. doi: 10.1128/jb.178.23.6714-6719.1996

Regulation of CO2 assimilation in Ralstonia eutropha: premature transcription termination within the cbb operon.

J Schäferjohann 1, R Bednarski 1, B Bowien 1
PMCID: PMC178566  PMID: 8955287

Abstract

In the facultatively chemoautotrophic bacterium Ralstonia eutropha (formerly Alcaligenes eutrophus), most genes required for CO2 assimilation via the Calvin cycle are organized within two highly homologous cbb operons located on the chromosome and on megaplasmid pHG1, respectively, of strain H16. These operons are subject to tight control exerted by a promoter upstream of the 5'-terminal cbbL gene that is regulated by the activator CbbR. The existence of subpromoters within the operons was now excluded, as determined with lacZ operon fusions to suitable cbb gene fragments in the promoter-probe vector pBK. Nevertheless, marked differential expression of the promoter-proximal ribulose-1,5-bisphosphate carboxylase-oxygenase genes cbbLS and the remaining distal genes occurs within the operons. Computer analysis revealed a potential stem-loop structure immediately downstream of cbbS that was suspected to be involved in the differential gene expression. Nuclease S1 mapping identified a major 3' end and a minor 3' end of the relatively stable cbbLS partial transcript just downstream of this structure. Moreover, operon fusions containing progressively deleted stem-loop structures showed that the structure primarily caused transcriptional termination downstream of cbbS rather than increased the segmental stability of the cbbLS transcript. Premature transcription termination thus represents an important mechanism leading to differential gene expression within the cbb operons.

Full Text

The Full Text of this article is available as a PDF (225.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belasco J. G., Beatty J. T., Adams C. W., von Gabain A., Cohen S. N. Differential expression of photosynthesis genes in R. capsulata results from segmental differences in stability within the polycistronic rxcA transcript. Cell. 1985 Jan;40(1):171–181. doi: 10.1016/0092-8674(85)90320-4. [DOI] [PubMed] [Google Scholar]
  2. Bowien B., Mayer F., Codd G. A., Schlegel H. G. Purification, some properties and quaternary structure of the D-ribulose 1,5-diphosphate carboxylase of Alcaligenes eutrophus. Arch Microbiol. 1976 Nov 2;110(23):157–166. doi: 10.1007/BF00690223. [DOI] [PubMed] [Google Scholar]
  3. Bowien B., Schlegel H. G. Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Annu Rev Microbiol. 1981;35:405–452. doi: 10.1146/annurev.mi.35.100181.002201. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Bömmer D., Schäferjohann J., Bowien B. Identification of cbbBc as an additional distal gene of the chromosomal cbb CO2 fixation operon from Ralstonia eutropha. Arch Microbiol. 1996 Oct;166(4):245–251. doi: 10.1007/s002030050380. [DOI] [PubMed] [Google Scholar]
  6. DeHoff B. S., Lee J. K., Donohue T. J., Gumport R. I., Kaplan S. In vivo analysis of puf operon expression in Rhodobacter sphaeroides after deletion of a putative intercistronic transcription terminator. J Bacteriol. 1988 Oct;170(10):4681–4692. doi: 10.1128/jb.170.10.4681-4692.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Downing W., Dennis P. P. RNA polymerase activity may regulate transcription initiation and attenuation in the rplKAJLrpoBC operon in Escherichia coli. J Biol Chem. 1991 Jan 15;266(2):1304–1311. [PubMed] [Google Scholar]
  9. Freier S. M., Kierzek R., Jaeger J. A., Sugimoto N., Caruthers M. H., Neilson T., Turner D. H. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9373–9377. doi: 10.1073/pnas.83.24.9373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gibson J. L., Falcone D. L., Tabita F. R. Nucleotide sequence, transcriptional analysis, and expression of genes encoded within the form I CO2 fixation operon of Rhodobacter sphaeroides. J Biol Chem. 1991 Aug 5;266(22):14646–14653. [PubMed] [Google Scholar]
  11. Kortlüke C., Friedrich B. Maturation of membrane-bound hydrogenase of Alcaligenes eutrophus H16. J Bacteriol. 1992 Oct;174(19):6290–6293. doi: 10.1128/jb.174.19.6290-6293.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kossmann J., Klintworth R., Bowien B. Sequence analysis of the chromosomal and plasmid genes encoding phosphoribulokinase from Alcaligenes eutrophus. Gene. 1989 Dec 21;85(1):247–252. doi: 10.1016/0378-1119(89)90490-3. [DOI] [PubMed] [Google Scholar]
  13. Kusano T., Takeshima T., Inoue C., Sugawara K. Evidence for two sets of structural genes coding for ribulose bisphosphate carboxylase in Thiobacillus ferrooxidans. J Bacteriol. 1991 Nov;173(22):7313–7323. doi: 10.1128/jb.173.22.7313-7323.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kusian B., Bednarski R., Husemann M., Bowien B. Characterization of the duplicate ribulose-1,5-bisphosphate carboxylase genes and cbb promoters of Alcaligenes eutrophus. J Bacteriol. 1995 Aug;177(15):4442–4450. doi: 10.1128/jb.177.15.4442-4450.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kusian B., Bowien B. Operator binding of the CbbR protein, which activates the duplicate cbb CO2 assimilation operons of Alcaligenes eutrophus. J Bacteriol. 1995 Nov;177(22):6568–6574. doi: 10.1128/jb.177.22.6568-6574.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kusian B., Yoo J. G., Bednarski R., Bowien B. The Calvin cycle enzyme pentose-5-phosphate 3-epimerase is encoded within the cfx operons of the chemoautotroph Alcaligenes eutrophus. J Bacteriol. 1992 Nov;174(22):7337–7344. doi: 10.1128/jb.174.22.7337-7344.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Meijer W. G., Arnberg A. C., Enequist H. G., Terpstra P., Lidstrom M. E., Dijkhuizen L. Identification and organization of carbon dioxide fixation genes in Xanthobacter flavus H4-14. Mol Gen Genet. 1991 Feb;225(2):320–330. doi: 10.1007/BF00269865. [DOI] [PubMed] [Google Scholar]
  18. Melefors O., von Gabain A. Site-specific endonucleolytic cleavages and the regulation of stability of E. coli ompA mRNA. Cell. 1988 Mar 25;52(6):893–901. doi: 10.1016/0092-8674(88)90431-x. [DOI] [PubMed] [Google Scholar]
  19. Newbury S. F., Smith N. H., Higgins C. F. Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell. 1987 Dec 24;51(6):1131–1143. doi: 10.1016/0092-8674(87)90599-x. [DOI] [PubMed] [Google Scholar]
  20. Prentki P., Krisch H. M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. doi: 10.1016/0378-1119(84)90059-3. [DOI] [PubMed] [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schäferjohann J., Yoo J. G., Bowien B. Analysis of the genes forming the distal parts of the two cbb CO2 fixation operons from Alcaligenes eutrophus. Arch Microbiol. 1995 Apr;163(4):291–299. doi: 10.1007/BF00393383. [DOI] [PubMed] [Google Scholar]
  23. Schäferjohann J., Yoo J. G., Kusian B., Bowien B. The cbb operons of the facultative chemoautotroph Alcaligenes eutrophus encode phosphoglycolate phosphatase. J Bacteriol. 1993 Nov;175(22):7329–7340. doi: 10.1128/jb.175.22.7329-7340.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Srivastava S., Urban M., Friedrich B. Mutagenesis of Alcaligenes eutrophus by insertion of the drug-resistance transposon Tn5. Arch Microbiol. 1982 May;131(3):203–207. doi: 10.1007/BF00405879. [DOI] [PubMed] [Google Scholar]
  25. Viale A. M., Kobayashi H., Akazawa T. Expressed genes for plant-type ribulose 1,5-bisphosphate carboxylase/oxygenase in the photosynthetic bacterium Chromatium vinosum, which possesses two complete sets of the genes. J Bacteriol. 1989 May;171(5):2391–2400. doi: 10.1128/jb.171.5.2391-2400.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Windhövel U., Bowien B. Identification of cfxR, an activator gene of autotrophic CO2 fixation in Alcaligenes eutrophus. Mol Microbiol. 1991 Nov;5(11):2695–2705. doi: 10.1111/j.1365-2958.1991.tb01978.x. [DOI] [PubMed] [Google Scholar]
  27. Windhövel U., Bowien B. On the operon structure of the cfx gene clusters in Alcaligenes eutrophus. Arch Microbiol. 1990;154(1):85–91. doi: 10.1007/BF00249183. [DOI] [PubMed] [Google Scholar]
  28. Yabuuchi E., Kosako Y., Yano I., Hotta H., Nishiuchi Y. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum (Smith 1896) comb. Nov. and Ralstonia eutropha (Davis 1969) comb. Nov. Microbiol Immunol. 1995;39(11):897–904. doi: 10.1111/j.1348-0421.1995.tb03275.x. [DOI] [PubMed] [Google Scholar]
  29. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  30. Yoo J. G., Bowien B. Analysis of the cbbF genes from Alcaligenes eutrophus that encode fructose-1,6-/sedoheptulose-1,7-bisphosphatase. Curr Microbiol. 1995 Jul;31(1):55–61. doi: 10.1007/BF00294635. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES