Abstract
We have studied the ability of three mutant forms of SpoIIAA, containing amino acid substitutions at the site of phosphorylation (serine 58), to interact with SpoIIAB. Native gel analysis revealed that SpoIIAAS58A could form a complex with SpoIIAB in the presence of ADP and more strongly in the presence of ATP. SpoIIAAS58N did not form a complex with SpoIIAB in the presence of ADP but displayed some interaction with SpoIIAB in the presence of ATP. SpoIIAAS58D was unable to form a complex with SpoIIAB in the presence of either ADP or ATP. Corresponding differences were found in the behavior of the three mutant proteins when studied by gel permeation with high-performance liquid chromatography and limited proteolysis. SpoIIAAS58A behaved like the wild-type SpoIIAA, SpoIIAAS58D like SpoIIAA-P, and SpoIIAAS58N in a way that was intermediate between the behaviors of SpoIIAA and SpoIIAA-P. Limited proteolysis was also used to show that on binding of ADP or ATP SpoIIAB undergoes a shift in conformation. The affinity of SpoIIAB for ADP and ATP was determined by limited proteolysis in the presence of a wide range of nucleotide concentrations. The results indicated that SpoIIAB has approximately equal affinity for ADP and for ATP.
Full Text
The Full Text of this article is available as a PDF (216.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alper S., Dufour A., Garsin D. A., Duncan L., Losick R. Role of adenosine nucleotides in the regulation of a stress-response transcription factor in Bacillus subtilis. J Mol Biol. 1996 Jul 12;260(2):165–177. doi: 10.1006/jmbi.1996.0390. [DOI] [PubMed] [Google Scholar]
- Alper S., Duncan L., Losick R. An adenosine nucleotide switch controlling the activity of a cell type-specific transcription factor in B. subtilis. Cell. 1994 Apr 22;77(2):195–205. doi: 10.1016/0092-8674(94)90312-3. [DOI] [PubMed] [Google Scholar]
- Arigoni F., Duncan L., Alper S., Losick R., Stragier P. SpoIIE governs the phosphorylation state of a protein regulating transcription factor sigma F during sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3238–3242. doi: 10.1073/pnas.93.8.3238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arigoni F., Pogliano K., Webb C. D., Stragier P., Losick R. Localization of protein implicated in establishment of cell type to sites of asymmetric division. Science. 1995 Oct 27;270(5236):637–640. doi: 10.1126/science.270.5236.637. [DOI] [PubMed] [Google Scholar]
- Barák I., Behari J., Olmedo G., Guzmán P., Brown D. P., Castro E., Walker D., Westpheling J., Youngman P. Structure and function of the Bacillus SpoIIE protein and its localization to sites of sporulation septum assembly. Mol Microbiol. 1996 Mar;19(5):1047–1060. doi: 10.1046/j.1365-2958.1996.433963.x. [DOI] [PubMed] [Google Scholar]
- Challoner-Courtney I. J., Yudkin M. D. Molecular and phenotypic characterization of promoter-proximal mutations in the spoIIA locus of Bacillus subtilis. J Bacteriol. 1993 Sep;175(17):5636–5641. doi: 10.1128/jb.175.17.5636-5641.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davletov B. A., Südhof T. C. Ca(2+)-dependent conformational change in synaptotagmin I. J Biol Chem. 1994 Nov 18;269(46):28547–28550. [PubMed] [Google Scholar]
- Diederich B., Wilkinson J. F., Magnin T., Najafi M., Erringston J., Yudkin M. D. Role of interactions between SpoIIAA and SpoIIAB in regulating cell-specific transcription factor sigma F of Bacillus subtilis. Genes Dev. 1994 Nov 1;8(21):2653–2663. doi: 10.1101/gad.8.21.2653. [DOI] [PubMed] [Google Scholar]
- Duncan L., Alper S., Arigoni F., Losick R., Stragier P. Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science. 1995 Oct 27;270(5236):641–644. doi: 10.1126/science.270.5236.641. [DOI] [PubMed] [Google Scholar]
- Duncan L., Alper S., Losick R. SpoIIAA governs the release of the cell-type specific transcription factor sigma F from its anti-sigma factor SpoIIAB. J Mol Biol. 1996 Jul 12;260(2):147–164. doi: 10.1006/jmbi.1996.0389. [DOI] [PubMed] [Google Scholar]
- Duncan L., Losick R. SpoIIAB is an anti-sigma factor that binds to and inhibits transcription by regulatory protein sigma F from Bacillus subtilis. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2325–2329. doi: 10.1073/pnas.90.6.2325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Errington J. Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev. 1993 Mar;57(1):1–33. doi: 10.1128/mr.57.1.1-33.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Errington J., Feucht A., Lewis P. J., Lord M., Magnin T., Najafi S. M., Wilkinson J. F., Yudkin M. D. Control of the cell-specificity of sigma F activity in Bacillus subtilis. Philos Trans R Soc Lond B Biol Sci. 1996 Apr 29;351(1339):537–542. doi: 10.1098/rstb.1996.0052. [DOI] [PubMed] [Google Scholar]
- Errington J., Mandelstam J. Variety of sporulation phenotypes resulting from mutations in a single regulatory locus, spoIIA, in Bacillus subtilis. J Gen Microbiol. 1983 Jul;129(7):2091–2101. doi: 10.1099/00221287-129-7-2091. [DOI] [PubMed] [Google Scholar]
- Feucht A., Magnin T., Yudkin M. D., Errington J. Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis. Genes Dev. 1996 Apr 1;10(7):794–803. doi: 10.1101/gad.10.7.794. [DOI] [PubMed] [Google Scholar]
- Hofmeister A. E., Londoño-Vallejo A., Harry E., Stragier P., Losick R. Extracellular signal protein triggering the proteolytic activation of a developmental transcription factor in B. subtilis. Cell. 1995 Oct 20;83(2):219–226. doi: 10.1016/0092-8674(95)90163-9. [DOI] [PubMed] [Google Scholar]
- Horvitz H. R., Herskowitz I. Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell. 1992 Jan 24;68(2):237–255. doi: 10.1016/0092-8674(92)90468-r. [DOI] [PubMed] [Google Scholar]
- Karow M. L., Glaser P., Piggot P. J. Identification of a gene, spoIIR, that links the activation of sigma E to the transcriptional activity of sigma F during sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2012–2016. doi: 10.1073/pnas.92.6.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Loeb J. A., Drickamer K. Conformational changes in the chicken receptor for endocytosis of glycoproteins. Modulation of ligand-binding activity by Ca2+ and pH. J Biol Chem. 1988 Jul 15;263(20):9752–9760. [PubMed] [Google Scholar]
- Londoño-Vallejo J. A., Stragier P. Cell-cell signaling pathway activating a developmental transcription factor in Bacillus subtilis. Genes Dev. 1995 Feb 15;9(4):503–508. doi: 10.1101/gad.9.4.503. [DOI] [PubMed] [Google Scholar]
- Losick R., Stragier P. Crisscross regulation of cell-type-specific gene expression during development in B. subtilis. Nature. 1992 Feb 13;355(6361):601–604. doi: 10.1038/355601a0. [DOI] [PubMed] [Google Scholar]
- Magnin T., Lord M., Errington J., Yudkin M. D. Establishing differential gene expression in sporulating Bacillus subtilis: phosphorylation of SpoIIAA (anti-anti-sigmaF) alters its conformation and prevents formation of a SpoIIAA/SpoIIAB/ADP complex. Mol Microbiol. 1996 Feb;19(4):901–907. doi: 10.1046/j.1365-2958.1996.434964.x. [DOI] [PubMed] [Google Scholar]
- Margolis P., Driks A., Losick R. Establishment of cell type by compartmentalized activation of a transcription factor. Science. 1991 Oct 25;254(5031):562–565. doi: 10.1126/science.1948031. [DOI] [PubMed] [Google Scholar]
- Min K. T., Hilditch C. M., Diederich B., Errington J., Yudkin M. D. Sigma F, the first compartment-specific transcription factor of B. subtilis, is regulated by an anti-sigma factor that is also a protein kinase. Cell. 1993 Aug 27;74(4):735–742. doi: 10.1016/0092-8674(93)90520-z. [DOI] [PubMed] [Google Scholar]
- Najafi S. M., Harris D. A., Yudkin M. D. The SpoIIAA protein of Bacillus subtilis has GTP-binding properties. J Bacteriol. 1996 Nov;178(22):6632–6634. doi: 10.1128/jb.178.22.6632-6634.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Najafi S. M., Willis A. C., Yudkin M. D. Site of phosphorylation of SpoIIAA, the anti-anti-sigma factor for sporulation-specific sigma F of Bacillus subtilis. J Bacteriol. 1995 May;177(10):2912–2913. doi: 10.1128/jb.177.10.2912-2913.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rajavel M., Gross J., Segura E., Moore W. T., Grubmeyer C. Limited proteolysis of Salmonella typhimurium nicotinic acid phosphoribosyltransferase reveals ATP-linked conformational change. Biochemistry. 1996 Apr 2;35(13):3909–3916. doi: 10.1021/bi951791y. [DOI] [PubMed] [Google Scholar]
- Schmidt R., Margolis P., Duncan L., Coppolecchia R., Moran C. P., Jr, Losick R. Control of developmental transcription factor sigma F by sporulation regulatory proteins SpoIIAA and SpoIIAB in Bacillus subtilis. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9221–9225. doi: 10.1073/pnas.87.23.9221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider E., Wilken S., Schmid R. Nucleotide-induced conformational changes of MalK, a bacterial ATP binding cassette transporter protein. J Biol Chem. 1994 Aug 12;269(32):20456–20461. [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Shapiro L. Protein localization and asymmetry in the bacterial cell. Cell. 1993 Jun 4;73(5):841–855. doi: 10.1016/0092-8674(93)90266-s. [DOI] [PubMed] [Google Scholar]
- Wiltfang J., Arold N., Neuhoff V. A new multiphasic buffer system for sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins and peptides with molecular masses 100,000-1000, and their detection with picomolar sensitivity. Electrophoresis. 1991 May;12(5):352–366. doi: 10.1002/elps.1150120507. [DOI] [PubMed] [Google Scholar]