Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Dec;178(23):6790–6795. doi: 10.1128/jb.178.23.6790-6795.1996

Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism.

B Nobelmann 1, J W Lengeler 1
PMCID: PMC178577  PMID: 8955298

Abstract

In enteric bacteria, the hexitol galactitol (Gat) (formerly dulcitol) is taken up through enzyme II (II(Gat)) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), and accumulated as galactitol 1-phosphate (Gat1P). The gat genes involved in galactitol metabolism have been isolated from the wild-type isolate Escherichia coli EC3132 and cloned on a 7.8-kbp PstI DNA fragment. They comprise six complete open reading frames and one truncated open reading frame in the order gatYZABCDR'. The genes gatABC code for the proteins GatA (150 residues) and GatB (94 residues), which correspond to the hydrophilic domains IIA(Gat) and IIB(Gat), and GatC, which represents a membrane-bound transporter domain IIC(Gat) (35 kDa, 427 residues). The three polypeptides together constitute a II(Gat) of average size (671 residues). Gene gatD codes for a Gat1P-specific NAD-dependent dehydrogenase (38 kDa, 346 residues), gatZ codes for a protein (42 kDa, 378 residues) of unknown function, and gatY (31 kDa, 286 residues) codes for a D-tagatose-1,6-bisphosphate aldolase with similarity to other known ketose-bisphosphate aldolases. The truncated gatR' gene, whose product shows similarity to the glucitol repressor GutR, closely resembles a gatR gene fragment from E. coli K-12. The gat genes map in both organisms at similar positions, in E. coli K-12, where they are transcribed counterclockwise at precisely 46.7 min or 2,173 to 2,180 kbp. The genes are expressed constitutively in both strains, probably due to a mutation(s) in gatR. Transcription initiation sites for the gatYp and the gatRp promoters were determined by primer extension analysis.

Full Text

The Full Text of this article is available as a PDF (272.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birkenbihl R. P., Vielmetter W. Complete maps of IS1, IS2, IS3, IS4, IS5, IS30 and IS150 locations in Escherichia coli K12. Mol Gen Genet. 1989 Dec;220(1):147–153. doi: 10.1007/BF00260869. [DOI] [PubMed] [Google Scholar]
  2. Bockmann J., Heuel H., Lengeler J. W. Characterization of a chromosomally encoded, non-PTS metabolic pathway for sucrose utilization in Escherichia coli EC3132. Mol Gen Genet. 1992 Oct;235(1):22–32. doi: 10.1007/BF00286177. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Daldal F. Molecular cloning of the gene for phosphofructokinase-2 of Escherichia coli and the nature of a mutation, pfkB1, causing a high level of the enzyme. J Mol Biol. 1983 Aug 5;168(2):285–305. doi: 10.1016/s0022-2836(83)80019-9. [DOI] [PubMed] [Google Scholar]
  5. Komoda Y., Enomoto M., Tominaga A. Large inversion in Escherichia coli K-12 1485IN between inversely oriented IS3 elements near lac and cdd. Genetics. 1991 Nov;129(3):639–645. doi: 10.1093/genetics/129.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lengeler J. Analysis of mutations affecting the dissmilation of galactitol (dulcitol) in Escherichia coli K 12. Mol Gen Genet. 1977 Mar 28;152(1):83–91. doi: 10.1007/BF00264944. [DOI] [PubMed] [Google Scholar]
  7. Lengeler J., Lin E. C. Reversal of the mannitol-sorbitol diauxie in Escherichia coli. J Bacteriol. 1972 Nov;112(2):840–848. doi: 10.1128/jb.112.2.840-848.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lengeler J. Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping. J Bacteriol. 1975 Oct;124(1):26–38. doi: 10.1128/jb.124.1.26-38.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Link C. D., Reiner A. M. Genotypic exclusion: a novel relationship between the ribitol-arabitol and galactitol genes of E. coli. Mol Gen Genet. 1983;189(2):337–339. doi: 10.1007/BF00337827. [DOI] [PubMed] [Google Scholar]
  10. Nobelmann B., Lengeler J. W. Sequence of the gat operon for galactitol utilization from a wild-type strain EC3132 of Escherichia coli. Biochim Biophys Acta. 1995 May 17;1262(1):69–72. doi: 10.1016/0167-4781(95)00053-j. [DOI] [PubMed] [Google Scholar]
  11. Postma P. W., Lengeler J. W., Jacobson G. R. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev. 1993 Sep;57(3):543–594. doi: 10.1128/mr.57.3.543-594.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Prentki P., Krisch H. M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. doi: 10.1016/0378-1119(84)90059-3. [DOI] [PubMed] [Google Scholar]
  13. Reizer J., Ramseier T. M., Reizer A., Charbit A., Saier M. H., Jr Novel phosphotransferase genes revealed by bacterial genome sequencing: a gene cluster encoding a putative N-acetylgalactosamine metabolic pathway in Escherichia coli. Microbiology. 1996 Feb;142(Pt 2):231–250. doi: 10.1099/13500872-142-2-231. [DOI] [PubMed] [Google Scholar]
  14. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Van Gijsegem F., Toussaint A. Chromosome transfer and R-prime formation by an RP4::mini-Mu derivative in Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, and Proteus mirabilis. Plasmid. 1982 Jan;7(1):30–44. doi: 10.1016/0147-619x(82)90024-5. [DOI] [PubMed] [Google Scholar]
  16. WOLFF J. B., KAPLAN N. O. Hexitol metabolism in Escherichia coli. J Bacteriol. 1956 May;71(5):557–564. doi: 10.1128/jb.71.5.557-564.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wehmeier U. F., Nobelmann B., Lengeler J. W. Cloning of the Escherichia coli sor genes for L-sorbose transport and metabolism and physical mapping of the genes near metH and iclR. J Bacteriol. 1992 Dec;174(23):7784–7790. doi: 10.1128/jb.174.23.7784-7790.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Woodward M. J., Charles H. P. Polymorphism in Escherichia coli: rtl atl and gat regions behave as chromosomal alternatives. J Gen Microbiol. 1983 Jan;129(1):75–84. doi: 10.1099/00221287-129-1-75. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES