Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Dec;178(23):6849–6856. doi: 10.1128/jb.178.23.6849-6856.1996

Analysis of the CO dehydrogenase/acetyl-coenzyme A synthase operon of Methanosarcina thermophila.

J A Maupin-Furlow 1, J G Ferry 1
PMCID: PMC178585  PMID: 8955306

Abstract

The cdhABC genes encoding the respective alpha, epsilon, and beta subunits of the five-subunit (alpha, beta, gamma, delta, and epsilon) CO dehydrogenase/acetyl-coenzyme synthase (CODH/ACS) complex from Methanosarcina thermophila were cloned and sequenced. Northern (RNA) blot analyses indicated that the cdh genes encoding the five subunits and an open reading frame (ORF1) with unknown function are cotranscribed during growth on acetate. Northern blot and primer extension analyses suggested that mRNA processing and multiple promoters may be involved in cdh transcript synthesis. The putative CdhA (alpha subunit) and CdhB (epsilon subunit) proteins each have 40% identity to CdhA and CdhB of the CODH/ACS complex from Methanosaeta soehngenii. The cdhC gene encodes the beta subunit (CdhC) of the CODH/ACS complex from M. thermophila. The N-terminal 397 amino acids of CdhC are 42% identical to the C-terminal half of the alpha subunit of CODH/ACS from the acetogenic anaerobe Clostridium thermoaceticum. Sequence analysis suggested potential structures and functions for the previously uncharacterized beta subunit from M. thermophila. The deduced protein sequence of ORF1, located between the cdhC and cdhD genes, has 29% identity to NifH2 from Methanobacterium ivanovii.

Full Text

The Full Text of this article is available as a PDF (401.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbanat D. R., Ferry J. G. Resolution of component proteins in an enzyme complex from Methanosarcina thermophila catalyzing the synthesis or cleavage of acetyl-CoA. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3272–3276. doi: 10.1073/pnas.88.8.3272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson M. E., Lindahl P. A. Organization of clusters and internal electron pathways in CO dehydrogenase from Clostridium thermoaceticum: relevance to the mechanism of catalysis and cyanide inhibition. Biochemistry. 1994 Jul 26;33(29):8702–8711. doi: 10.1021/bi00195a011. [DOI] [PubMed] [Google Scholar]
  3. Bonam D., Ludden P. W. Purification and characterization of carbon monoxide dehydrogenase, a nickel, zinc, iron-sulfur protein, from Rhodospirillum rubrum. J Biol Chem. 1987 Mar 5;262(7):2980–2987. [PubMed] [Google Scholar]
  4. Chien Y. T., Zinder S. H. Cloning, DNA sequencing, and characterization of a nifD-homologous gene from the archaeon Methanosarcina barkeri 227 which resembles nifD1 from the eubacterium Clostridium pasteurianum. J Bacteriol. 1994 Nov;176(21):6590–6598. doi: 10.1128/jb.176.21.6590-6598.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chien Y. T., Zinder S. H. Cloning, functional organization, transcript studies, and phylogenetic analysis of the complete nitrogenase structural genes (nifHDK2) and associated genes in the archaeon Methanosarcina barkeri 227. J Bacteriol. 1996 Jan;178(1):143–148. doi: 10.1128/jb.178.1.143-148.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eggen R. I., Geerling A. C., Jetten M. S., de Vos W. M. Cloning, expression, and sequence analysis of the genes for carbon monoxide dehydrogenase of Methanothrix soehngenii. J Biol Chem. 1991 Apr 15;266(11):6883–6887. [PubMed] [Google Scholar]
  7. Eggen R. I., van Kranenburg R., Vriesema A. J., Geerling A. C., Verhagen M. F., Hagen W. R., de Vos W. M. Carbon monoxide dehydrogenase from Methanosarcina frisia Gö1. Characterization of the enzyme and the regulated expression of two operon-like cdh gene clusters. J Biol Chem. 1996 Jun 14;271(24):14256–14263. doi: 10.1074/jbc.271.24.14256. [DOI] [PubMed] [Google Scholar]
  8. Ferry J. G. CO dehydrogenase. Annu Rev Microbiol. 1995;49:305–333. doi: 10.1146/annurev.mi.49.100195.001513. [DOI] [PubMed] [Google Scholar]
  9. Georgiadis M. M., Komiya H., Chakrabarti P., Woo D., Kornuc J. J., Rees D. C. Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Science. 1992 Sep 18;257(5077):1653–1659. doi: 10.1126/science.1529353. [DOI] [PubMed] [Google Scholar]
  10. Grahame D. A. Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. J Biol Chem. 1991 Nov 25;266(33):22227–22233. [PubMed] [Google Scholar]
  11. Grahame D. A., DeMoll E. Partial reactions catalyzed by protein components of the acetyl-CoA decarbonylase synthase enzyme complex from Methanosarcina barkeri. J Biol Chem. 1996 Apr 5;271(14):8352–8358. doi: 10.1074/jbc.271.14.8352. [DOI] [PubMed] [Google Scholar]
  12. Grahame D. A., DeMoll E. Substrate and accessory protein requirements and thermodynamics of acetyl-CoA synthesis and cleavage in Methanosarcina barkeri. Biochemistry. 1995 Apr 11;34(14):4617–4624. doi: 10.1021/bi00014a015. [DOI] [PubMed] [Google Scholar]
  13. Grahame D. A., Khangulov S., DeMoll E. Reactivity of a paramagnetic enzyme--CO adduct in acetyl-CoA synthesis and cleavage. Biochemistry. 1996 Jan 16;35(2):593–600. doi: 10.1021/bi9511494. [DOI] [PubMed] [Google Scholar]
  14. Grahame D. A. Substrate and cofactor reactivity of a carbon monoxide dehydrogenase-corrinoid enzyme complex: stepwise reduction of iron-sulfur and corrinoid centers, the corrinoid Co2+/1+ redox midpoint potential, and overall synthesis of acetyl-CoA. Biochemistry. 1993 Oct 12;32(40):10786–10793. doi: 10.1021/bi00091a033. [DOI] [PubMed] [Google Scholar]
  15. Gupta R. S., Singh B. Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus. Curr Biol. 1994 Dec 1;4(12):1104–1114. doi: 10.1016/s0960-9822(00)00249-9. [DOI] [PubMed] [Google Scholar]
  16. Jablonski P. E., Lu W. P., Ragsdale S. W., Ferry J. G. Characterization of the metal centers of the corrinoid/iron-sulfur component of the CO dehydrogenase enzyme complex from Methanosarcina thermophila by EPR spectroscopy and spectroelectrochemistry. J Biol Chem. 1993 Jan 5;268(1):325–329. [PubMed] [Google Scholar]
  17. Jetten M. S., Hagen W. R., Pierik A. J., Stams A. J., Zehnder A. J. Paramagnetic centers and acetyl-coenzyme A/CO exchange activity of carbon monoxide dehydrogenase from Methanothrix soehngenii. Eur J Biochem. 1991 Jan 30;195(2):385–391. doi: 10.1111/j.1432-1033.1991.tb15717.x. [DOI] [PubMed] [Google Scholar]
  18. Kerby R. L., Hong S. S., Ensign S. A., Coppoc L. J., Ludden P. W., Roberts G. P. Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system. J Bacteriol. 1992 Aug;174(16):5284–5294. doi: 10.1128/jb.174.16.5284-5294.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lu W. P., Jablonski P. E., Rasche M., Ferry J. G., Ragsdale S. W. Characterization of the metal centers of the Ni/Fe-S component of the carbon-monoxide dehydrogenase enzyme complex from Methanosarcina thermophila. J Biol Chem. 1994 Apr 1;269(13):9736–9742. [PubMed] [Google Scholar]
  20. Lu W. P., Schiau I., Cunningham J. R., Ragsdale S. W. Sequence and expression of the gene encoding the corrinoid/iron-sulfur protein from Clostridium thermoaceticum and reconstitution of the recombinant protein to full activity. J Biol Chem. 1993 Mar 15;268(8):5605–5614. [PubMed] [Google Scholar]
  21. Maupin-Furlow J. A., Ferry J. G. A proteasome from the methanogenic archaeon Methanosarcina thermophila. J Biol Chem. 1995 Dec 1;270(48):28617–28622. doi: 10.1074/jbc.270.48.28617. [DOI] [PubMed] [Google Scholar]
  22. Maupin-Furlow J., Ferry J. G. Characterization of the cdhD and cdhE genes encoding subunits of the corrinoid/iron-sulfur enzyme of the CO dehydrogenase complex from Methanosarcina thermophila. J Bacteriol. 1996 Jan;178(2):340–346. doi: 10.1128/jb.178.2.340-346.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Morton T. A., Runquist J. A., Ragsdale S. W., Shanmugasundaram T., Wood H. G., Ljungdahl L. G. The primary structure of the subunits of carbon monoxide dehydrogenase/acetyl-CoA synthase from Clostridium thermoaceticum. J Biol Chem. 1991 Dec 15;266(35):23824–23828. [PubMed] [Google Scholar]
  24. Pitt-Rivers R., Impiombato F. S. The binding of sodium dodecyl sulphate to various proteins. Biochem J. 1968 Oct;109(5):825–830. doi: 10.1042/bj1090825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Qiu D., Kumar M., Ragsdale S. W., Spiro T. G. Nature's carbonylation catalyst: Raman spectroscopic evidence that carbon monoxide binds to iron, not nickel, in CO dehydrogenase. Science. 1994 May 6;264(5160):817–819. doi: 10.1126/science.8171334. [DOI] [PubMed] [Google Scholar]
  26. Ragsdale S. W., Clark J. E., Ljungdahl L. G., Lundie L. L., Drake H. L. Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfur protein. J Biol Chem. 1983 Feb 25;258(4):2364–2369. [PubMed] [Google Scholar]
  27. Raybuck S. A., Ramer S. E., Abbanat D. R., Peters J. W., Orme-Johnson W. H., Ferry J. G., Walsh C. T. Demonstration of carbon-carbon bond cleavage of acetyl coenzyme A by using isotopic exchange catalyzed by the CO dehydrogenase complex from acetate-grown Methanosarcina thermophila. J Bacteriol. 1991 Jan;173(2):929–932. doi: 10.1128/jb.173.2.929-932.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Realini C., Rogers S. W., Rechsteiner M. KEKE motifs. Proposed roles in protein-protein association and presentation of peptides by MHC class I receptors. FEBS Lett. 1994 Jul 11;348(2):109–113. doi: 10.1016/0014-5793(94)00569-9. [DOI] [PubMed] [Google Scholar]
  29. Rechsteiner M. Natural substrates of the ubiquitin proteolytic pathway. Cell. 1991 Aug 23;66(4):615–618. doi: 10.1016/0092-8674(91)90104-7. [DOI] [PubMed] [Google Scholar]
  30. Souillard N., Magot M., Possot O., Sibold L. Nucleotide sequence of regions homologous to nifH (nitrogenase Fe protein) from the nitrogen-fixing archaebacteria Methanococcus thermolithotrophicus and Methanobacterium ivanovii: evolutionary implications. J Mol Evol. 1988;27(1):65–76. doi: 10.1007/BF02099731. [DOI] [PubMed] [Google Scholar]
  31. Sowers K. R., Thai T. T., Gunsalus R. P. Transcriptional regulation of the carbon monoxide dehydrogenase gene (cdhA) in Methanosarcina thermophila. J Biol Chem. 1993 Nov 5;268(31):23172–23178. [PubMed] [Google Scholar]
  32. Stephens P. J., McKenna M. C., Ensign S. A., Bonam D., Ludden P. W. Identification of a Ni- and Fe-containing cluster in Rhodospirillum rubrum carbon monoxide dehydrogenase. J Biol Chem. 1989 Oct 5;264(28):16347–16350. [PubMed] [Google Scholar]
  33. Terlesky K. C., Nelson M. J., Ferry J. G. Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing corrinoid and nickel from acetate-grown Methanosarcina thermophila. J Bacteriol. 1986 Dec;168(3):1053–1058. doi: 10.1128/jb.168.3.1053-1058.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Xia J., Sinclair J. F., Baldwin T. O., Lindahl P. A. Carbon monoxide dehydrogenase from Clostridium thermoaceticum: quaternary structure, stoichiometry of its SDS-induced dissociation, and characterization of the faster-migrating form. Biochemistry. 1996 Feb 13;35(6):1965–1971. doi: 10.1021/bi9511853. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES